首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury.  相似文献   

2.
Stroke, is the third leading cause of death and disability in the Western world. Stroke refers to set of ischemic conditions resulting from the occlusion or hemorrhage of blood vessels supplying the brain. Loss of blood flow to the brain results in neuronal injury due to both oxygen and nutrient deprivation and the activation of injurious signal cascades. Ultimately cerebral ischemia results in death and dysfunction of brain cells, and neurological deficits that reflect the location and size of the compromised brain area. Injury due to ischemic stroke occurs by a highly choreographed series of complex spatial and temporal events that evolve over hours to days. These events involve complex interactions between fundamental cell injury mechanisms including excitotoxicity and ionic imbalance, oxidative and nitrosative stress, apoptotic-like cell death and inflammatory responses. Genetically engineered mice have been valuable tools to probe putative mechanisms of neuronal death and uncover potential strategies that might render neurons resistant to ischemic injury. Findings from experimental stroke studies in genetically engineered animals are discussed.  相似文献   

3.
缺血性中风触发的炎症反应是一个级联放大过程,不仅可直接对缺血脑组织造成继发性损伤,还可通过与其他病理生理通路的相互影响、相互促进,共同对缺血后脑组织造成不可逆损伤。因此,采用炎症标记物对脑缺血损伤及其预后进行评价,具有重要临床意义。临床研究发现,多炎症标记物法用于缺血性中风的诊治和预后评价比单炎症标记物法更全面、更准确,故更具明显优势。综述脑缺血引发的炎症机制、脑缺血所致炎症通路与其他病理生理通路( 如氧化应激、细胞凋亡和兴奋性毒性) 的关联以及炎症标记物在缺血性中风预后评价中的应用。  相似文献   

4.
Inflammatory damage plays an important role in cerebral ischemic pathogenesis and represents a new target for treatment of stroke. Shikonin has gained attention for its prominent anti-inflammatory property, but up to now little is known about shikonin treatment in acute ischemic stroke. The aim of this study was to evaluate the potential neuroprotective role of shikonin in cerebral ischemic injury, and investigate whether shikonin modulated inflammatory responses after stroke. Focal cerebral ischemia in male ICR mice was induced by transient middle cerebral artery occlusion. Shikonin (10 and 25 mg/kg) was administered by gavage once a day for 3 days before surgery and another dosage after operation. Neurological deficit, infarct volume, brain edema, blood–brain barrier (BBB) dysfunction, and inflammatory mediators were evaluated at 24 and 72 h after stroke. Compared with vehicle group, 25 mg/kg shikonin significantly improved neurological deficit, decreased infarct volume and edema both at 24 and 72 h after transient ischemic stroke, our data also showed that shikonin inhibited the pro-inflammatory mediators, including TLR4, TNF-α, NF-κB, and phosphorylation of p38MAPK in ischemic cortex. In addition, shikonin effectively alleviated brain leakage of Evans blue, up-regulated claudin-5 expression, and inhibited the over-expressed MMP-9 in ischemic brain. These results suggested that shikonin effectively protected brain against ischemic damage by regulating inflammatory responses and ameliorating BBB permeability.  相似文献   

5.

Background

The association between ischemic stroke and 2 single nucleotide polymorphisms (SNPs) on chromosome 12p13, rs12425791 and rs11833579 appears inconsistent across different samples. These SNPs are close to the ninjurin2 gene which may alter the risk of stroke by affecting brain response to ischemic injury. The purpose of this study was to investigate the association between these two SNPs and ischemic stroke risk, as well as prognostic outcomes in a Taiwanese sample.

Methods

We examined the relations of these two SNPs to the odds of new-onset ischemic stroke, ischemic stroke subtypes, and to the one year risk of stroke-related death or recurrent stroke following initial stroke in a case-control study. A total of 765 consecutive patients who had first-ever ischemic stroke were compared to 977 stroke-free, age-matched controls. SNPs were genotyped by Taqman fluorescent allelic discrimination assay. The association between ischemic stroke and SNPs were analyzed by multivariate logistic regression. Cox proportional hazard model was used to assess the effect of individual SNPs on stroke-related mortality or recurrent stroke.

Results

There was no significant association between SNP rs12425791 and rs11833579 and ischemic stroke after multiple testing corrections. However, the marginal significant association was observed between SNP rs12425791 and large artery atherosclerosis under recessive model (OR, 2.30; 95%CI, 1.22-4.34; q-value = 0.062). Among the 765 ischemic stroke patients, 59 died or developed a recurrent stroke. After adjustment for age, sex, vascular risk factors and baseline stroke severity, Cox proportional hazard analysis indicated that the hazard ratios were 2.76 (95%CI, 1.34-5.68; q-value, 0.02) and 2.15 (95%CI, 1.15-4.02; q-value, 0.03) for individuals with homozygous variant allele of rs12425791 and rs11833579, respectively.

Conclusions

This is a precedent study that found genetic variants of rs12425791 and rs11833579 on chromosome 12p13 are independent predictors of stroke-related mortality or stroke recurrence in patients with incident ischemic stroke in Taiwan. Further study is needed to explore the details of the physiological function and the molecular mechanisms underlying the association of this genetic locus with ischemic stroke.  相似文献   

6.
7.

Background

Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.

Methodology/Principal Findings

We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.

Conclusion/Significance

CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke.  相似文献   

8.
Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.  相似文献   

9.
Tumor necrosis factor (TNF) and the TNF receptor (TNFR) superfamily play very important roles for cell death as well as normal immune regulation. Previous studies have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. The purpose of this investigation was to examine the protective effect of remifentanil preconditioning in cerebral ischemia/reperfusion injury (CIR) and its possible molecular mechanism. Results showed that Remifentanil pretreatment significantly decreased the CD4+ and increased the CD8+ in cerebral tissues. Additionally, CD4+/CD8+ in CIR + Remifentanil group was markedly lower than that in CIR group. TNF-α and TNFR1 in CIR + Remifentanil group rats was found to be significant lower than that in CIR group rats. The expression levels of Cyt-c, caspase-3, caspase-9 and pJNK proteins in brain of CIR + Remifentanil group rats were found to significantly decreased compared to CIR group rats. In addition, decreased ROS level indirectly inhibit JNK activation and cell death in CIR rat receiving Remifentanil preconditioning. From current experiment results, at least two signal pathways involve into the process of Remifentanil preconditioning inhibiting cerebral damage induced by ischemia reperfusion. The inhibitory effects of Remifentanil preconditioning on the brain damage are achieved probably through blocking the activation of TNF-α/TNFR1, JNK signal transduction pathways, which implies that Remifentanil preconditioning may be a potential and effective way for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TNF-α/TNFR1, JNK signal pathways. Taken together, this study indicated that regulation of the TNF-α/TNFR1 and JNK signal pathways may provide a new therapy for cerebral damage induced by ischemia and reperfusion.  相似文献   

10.
Inflammation plays an important role in ischemic stroke and in humans IL-10 may have a beneficial effect in stroke. We mucosally administered myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide to C57BL/6 mice before middle cerebral artery occlusion (MCAO) to induce an anti-inflammatory T cell response directed at CNS myelin. Nasal and oral administration of MOG(35-55) peptide decreased ischemic infarct size at 24 and 72 h after MCAO surgery. Nasal MOG(35-55) peptide was most efficacious and reduced infarct size by 70% at 24 h and by 50% at 72 h (p 相似文献   

11.
Stroke is the third leading cause of death as dementia is a main symptom of Alzheimer's disease. One of the important mechanisms in the pathogeny of stroke is free radical production during the reperfusion period, therefore the effects of a type of natural antioxidant, i.e. Crataegus flavonoids (CF), on brain ischemic insults were investigated in Mongolian gerbil stroke model. Results showed that pretreatment of the animals with CF decreased reactive oxygen species (ROS) production, thiobarbituric acid reactive substances content, and nitrite/nitrate concentration in brain homogenate, increased the brain homogenate-associated antioxidant level in a dose-dependent manner. CF pretreatment increased the amount of biologically available NO by scavenging of superoxide anion produced during reperfusion. At same time, in the process of ischemia/reperfusion brain damage, the content of nitrite/nitrate (the end product of NO) increased, and of NO detected by ESR decreased. Oral pretreatment with CF decreased the nitrite/nitrate content in the brain homogenate and increased the biologically available NO concentration in a dose-dependent manner. The increasing effect of antioxidant on NO might be due to its scavenging effect on superoxide anion, which could react with NO into peroxynitrite. iNOS was implied in delayed neuron death after brain ischemic damage and it was found that pretreatment with CF could decrease the protein level of tumor necrosis factor (TNF)-alpha and nuclear factor-kappa B (NF-kappaB), and increase the mRNA level of NOS estimated by western blotting and RT-PCR. More neurons survived and fewer cells suffered apoptosis in the hippocampal CA1 region of CF treated animal brain. These results suggest that oral administration of this antioxidant increases the antioxidant level in the brain and protects the brain against delayed cell death caused by ischemia/reperfusion injury.  相似文献   

12.
After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation without major differences in morphological brain damage compared to young.  相似文献   

13.
Mucosal tolerance to E-selectin prevents stroke and protects against ischemic brain damage in experimental models of stroke studying healthy animals or spontaneously hypertensive stroke-prone rats. A reduction in inflammation and neural damage was associated with immunomodulatory or "tolerogenic" responses to E-selectin. The purpose of the current study on ApoE deficient mice is to assess the capacity of this stroke prevention innovation to influence atherosclerosis, a major underlying cause for ischemic strokes; human E-selectin is being translated as a potential clinical prevention strategy for secondary stroke. Female ApoE-/- mice received intranasal delivery of E-selectin prior to (pre-tolerization) or simultaneously with initiation of a high-fat diet. After 7 weeks on the high-fat diet, lipid lesions in the aorta, serum triglycerides, and total cholesterol were assessed as markers of atherosclerosis development. We also assessed E-selectin-specific antibodies and cytokine responses, in addition to inflammatory responses that included macrophage infiltration of the aorta and altered gene expression profiles of aortic mRNA. Intranasal delivery of E-selectin prior to initiation of high-fat chow decreased atherosclerosis, serum total cholesterol, and expression of the leucocyte chemoattractant CCL21 that is typically upregulated in atherosclerotic lesions of ApoE-/- mice. This response was associated with the induction of E-selectin specific cells producing the immunomodulatory cytokine IL-10 and immunosuppressive antibody isotypes. Intranasal administration of E-selectin generates E-selectin specific immune responses that are immunosuppressive in nature and can ameliorate atherosclerosis, a major risk factor for ischemic stroke. These results provide additional preclinical support for the potential of induction of mucosal tolerance to E-selectin to prevent stroke.  相似文献   

14.
Activation of poly-(ADP-ribose) polymerase (PARP) is often associated with cytotoxicity, but its precise role in shock-induced lethality and in different modes of tissue injury is still unknown. We took advantage of the existence of mice with a targeted deletion of the PARP gene (PARP-/-) to examine the differential sensitivity of wild-type (wt) and PARP-/- mice toward endotoxin (LPS)-induced lethality and different forms of liver damage. All PARP-/- animals survived high-dose (20 mg/kg) LPS-mediated shock, which killed 60% of wt animals. Moreover, LPS-induced necrotic liver damage was significantly reduced. In contrast, when apoptotic liver damage was induced via injection of low concentrations of LPS (30 microgram/kg) into D-galactosamine-sensitized mice, or via activation of hepatic cell death receptors, PARP-/- animals were not protected. We conclude that PARP is involved in systemic LPS toxicity, while it plays a minor role in apoptotic liver damage mediated by TNF or CD95.  相似文献   

15.
Ischemic stroke represents the leading cause of death and disability among elderly people. Most stroke survivors are left with lifelong disability. With the exception of tissue-type plasminogen activator (t-PA), no effective therapy exists for the management of acute stroke. Understanding the role of various extrinsic and intrinsic pathogenic factors of ischemic damage represents a prime objective of ongoing stroke research. An important variable affecting stroke outcome is the presence or absence of reperfusion (recanalization of the occluded vessel) following an ischemic event. It appears that early reperfusion after a stroke is beneficial and capable of reversing the majority of ischemic dysfunctions. However, in some instances, late reperfusion may contrarily trigger deleterious processes and lead to more ischemic damage. Examples of ischemia/reperfusion damage using an experimental model of focal ischemia in rodents are provided, along with evidence that the brain-enriched gamma-isoform of protein kinase C may represent an important mediator of reperfusion-induced brain injury in mutant mice.  相似文献   

16.
Results of recent studies reveal vascular and neuroprotective effects of matrix metalloproteinase-9 (MMP-9) inhibition and MMP-9 gene deletion in experimental stroke. However, the cellular source of MMP-9 produced in the ischemic brain and the mechanistic basis of MMP-9-mediated brain injury require elucidation. In the present study, we used MMP-9-/- mice and chimeric knockouts lacking either MMP-9 in leukocytes or in resident brain cells to test the hypothesis that MMP-9 released from leukocytes recruited to the brain during postischemic reperfusion contributes to this injury phenotype. We also tested the hypothesis that MMP-9 promotes leukocyte recruitment to the ischemic brain and thus is proinflammatory. The extent of blood-brain barrier (BBB) breakdown, the neurological deficit, and the volume of infarction resulting from transient focal stroke were abrogated to a similar extent in MMP-9-/- mice and in chimeras lacking leukocytic MMP-9 but not in chimeras with MMP-9-containing leukocytes. Zymography and Western blot analysis from these chimeras confirmed that the elevated MMP-9 expression in the brain at 24 h of reperfusion is derived largely from leukocytes. MMP-9-/- mice exhibited a reduction in leukocyte-endothelial adherence and a reduction in the number of neutrophils plugging capillaries and infiltrating the ischemic brain during reperfusion; microvessel immunopositivity for collagen IV was also preserved in these animals. These latter results document proinflammatory actions of MMP-9 in the ischemic brain. Overall, our findings implicate leukocytes, most likely neutrophils, as a key cellular source of MMP-9, which, in turn, promotes leukocyte recruitment, causes BBB breakdown secondary to microvascular basal lamina proteolysis, and ultimately contributes to neuronal injury after transient focal stroke.  相似文献   

17.
Sieber MW  Claus RA  Witte OW  Frahm C 《PloS one》2011,6(10):e26288

Background

Increased age is a major risk factor for stroke incidence, post-ischemic mortality, and severe and long-term disability. Stroke outcome is considerably influenced by post-ischemic mechanisms. We hypothesized that the inflammatory response following an ischemic injury is altered in aged organisms.

Methods and Results

To that end, we analyzed the expression pattern of pro-inflammatory cytokines (TNF, IL-1α, IL-1β, IL-6), anti-inflammatory cytokines (IL-10, TGFβ1), and chemokines (Mip-1α, MCP-1, RANTES) of adult (2 months) and aged (24 months) mice brains at different reperfusion times (6 h, 12 h, 24 h, 2 d, 7 d) following transient occlusion of the middle cerebral artery. The infarct size was assessed to monitor possible consequences of an altered inflammatory response in aged mice. Our data revealed an increased neuro-inflammation with age. Above all, we found profound age-related alterations in the reaction to stroke. The response of pro-inflammatory cytokines (TNF, and IL-1β) and the level of chemokines (Mip-1α, and MCP-1) were strongly diminished in the aged post-ischemic brain tissue. IL-6 showed the strongest age-dependent decrease in its post-ischemic expression profile. Anti-inflammatory cytokines (TGFβ1, and IL-10) revealed no significant age dependency after ischemia. Aged mice brains tend to develop smaller infarcts.

Conclusion

The attenuated inflammatory response to stroke in aged animals may contribute to their smaller infarcts. The results presented here highlight the importance of using aged animals to investigate age-associated diseases like stroke, and should be considered as a major prerequisite in the development of age-adjusted therapeutic interventions.  相似文献   

18.
Increasing evidence indicates that sterile inflammatory response contributes to secondary brain injury following traumatic brain injury (TBI). However, the specific mechanisms remain largely unknown, as is whether CD24, known as an important regulator in the non-infectious inflammatory response, plays a role in secondary brain injury after TBI. Here, the expression of CD24 was detected in samples from patients with TBI by quantitative real-time polymerase chain reaction (PCR), western blotting, immunohistochemistry and immunofluorescence. RNA interference was used to investigate the effects of CD24 on inflammatory response in a mouse model of TBI. Nuclear factor kappa B (NF-κB) DNA-binding activity was measured by electrophoretic mobility shift assay, and the levels of downstream pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin 1β (IL-1β) were detected by real-time PCR. The results indicated that both the mRNA and protein levels of CD24 were markedly elevated after TBI in humans and mice, showing a time-dependent expression. The expression of CD24 could be observed in neurons, astrocytes and microglia in both humans and mice. Meanwhile, downregulation of CD24 significantly induced an increase of NF-κB DNA-binding activity and mRNA levels of TNF-α and IL-1β. These findings indicated that CD24 expression could negatively regulate the NF-κB/inflammatory factor pathway after experimental TBI in mice, thus providing a novel target for therapeutic intervention of TBI.  相似文献   

19.
Stroke results in inflammation, brain edema, and neuronal death. However, effective neuroprotectants are not available. Recent studies have shown that high mobility group box-1 (HMGB1), a proinflammatory cytokine, contributes to ischemic brain injury. Aquaporin 4 (AQP4), a water channel protein, is considered to play a pivotal role in ischemia-induced brain edema. More recently, studies have shown that pannexin 1 channels are involved in cerebral ischemic injury and the cellular inflammatory response. Here, we examined whether the pannexin 1 channel inhibitor probenecid could reduce focal ischemic brain injury by inhibiting cerebral inflammation and edema. Transient focal ischemia was induced in C57BL/6J mice by middle cerebral artery occlusion (MCAO) for 1 h. Infarct volume, neurological score and cerebral water content were evaluated 48 h after MCAO. Immunostaining, western blot analysis and ELISA were used to assess the effects of probenecid on the cellular inflammatory response, HMGB1 release and AQP4 expression. Administration of probenecid reduced infarct size, decreased cerebral water content, inhibited neuronal death, and reduced inflammation in the brain 48 h after stroke. In addition, HMGB1 release from neurons was significantly diminished and serum HMGB1 levels were substantially reduced following probenecid treatment. Moreover, AQP4 protein expression was downregulated in the cortical penumbra following post-stroke treatment with probenecid. These results suggest that probenecid, a powerful pannexin 1 channel inhibitor, protects against ischemic brain injury by inhibiting cerebral inflammation and edema.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号