首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

4.
Tissue factor (TF) initiates the extrinsic coagulation cascade on the surface of macrophages and endothelial cells. In septic patients, the extrinsic coagulation cascade is activated. When septic patients are febrile, mortality is decreased. The purpose of this study was to investigate the role of elevated temperatures on TF expression by endothelial cells during a sepsis-like challenge. Human endothelial vein cells (HUVECs) were incubated with lipopolysaccharide (LPS) or interleukin-1 beta (IL-1 beta) for 0, 2, 4, 6, or 8 h. At the 0-h time point, some HUVECs were heat shocked at 43 degrees C for 2 h and then recovered at 37 degrees C for 0, 2, 4, or 6 h. Heat-shocked and non-heat-shocked LPS-stimulated HUVECs were analyzed for TF-specific mRNA expression by ribonuclease protection assay (RPA), surface TF expression by flow cytometry, and TF activity by a two-stage clotting assay. Heat shocked LPS-stimulated HUVECs expressed significantly reduced TF-specific mRNA, TF surface protein levels, and TF surface activity when compared with non-heat-shocked, LPS-stimulated HUVECs (p < 0.0125, p < 0.0125, and p < 0.0001, respectively; repeated measures analysis of variance, ANOVA). If heat shock models elevated core temperature, these results suggest that fever may protect the host during sepsis by reducing TF activity on the surface of endothelial cells.  相似文献   

5.
6.
7.
8.
Vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-alpha) have been shown to synergistically increase tissue factor (TF) expression in endothelial cells; however, the role of the VEGF receptors (KDR, Flt-1, and neuropilin) in this process is unclear. Here we report that VEGF binding to the KDR receptor is necessary and sufficient for the potentiation of TNF-induced TF expression in human umbilical vein endothelial cells. TF expression was evaluated by Western blot analysis and fluorescence-activated cell sorting. In the absence of TNF-alpha, wild-type VEGF- or KDR receptor-selective variants induced an approximate 7-fold increase in total TF expression. Treatment with TNF alone produced an approximate 110-fold increase in total TF expression, whereas coincubation of TNF-alpha with wild-type VEGF- or KDR-selective variants resulted in an approximate 250-fold increase in TF expression. VEGF lacking the heparin binding domain was also able to potentiate TF expression, indicating that heparin-sulfate proteoglycan or neuropilin binding is not required for TF up-regulation. Neither placental growth factor nor an Flt-1-selective variant was capable of inducing TF expression in the presence or absence of TNF. Inhibition of protein-tyrosine kinase or protein kinase C activity significantly blocked the TNF/VEGF potentiation of TF up-regulation, whereas phorbol 12-myristate 13-acetate, a protein kinase C activator, increased TF expression. These data demonstrate that KDR receptor signaling governs both VEGF-induced TF expression and the potentiation of TNF-induced up-regulation of TF.  相似文献   

9.
10.
11.
Induction of tissue factor expression in endothelial cells via ligation of CD40 probably figures prominently in the pathogenesis of prevalent inflammatory diseases, including atherosclerosis. However, the molecular mechanisms of tissue factor gene expression triggered by CD40 ligand (CD40L) in this cell type remain unknown. We demonstrate here that the tissue factor promoter region -278 bp to +121 bp contains the CD40L-responsive elements, consisting of activator protein 1 (AP-1)+/-, nuclear factor (NF) kappaB-, and Egr-1-binding sites. Mutations of either the AP-1- or NF-kappaB-binding sites markedly reduced the CD40L-dependent promoter activation. The AP-1 and NF-kappaB sites displayed constitutive and CD40L-enhanceable DNA binding activity, respectively. Of note, mutation of the Egr-1-binding sites, previously not associated with CD40 signaling, impaired activation of the tissue factor promoter. Accordingly, CD40L strongly induced Egr-1 protein expression and DNA binding activity to all three bindings sites. In contrast to CD40L, other established inducers of tissue factor in endothelial cells, interleukin-1beta or tumor necrosis factor alpha, did not increase the expression of Egr-1. In conclusion, induction of tissue factor gene expression in human endothelial cells by CD40L involves AP-1 and NF-kappaB as well as Egr-1, a pathway previously not implicated in CD40 signaling and distinct from that employed by certain other proinflammatory cytokines.  相似文献   

12.
13.
14.
15.
16.
17.
Summary Hyperbaric oxygen (HBO) is increasingly used in a number of areas of medical practice, such as selected problem infections and wounds. The beneficial effects of HBO in treating ischemia-related wounds may be mediated by stimulating angiogenesis. We sought to investigate VEGF, the main angiogenic regulator, regulated by HBO in human umbilical vein endothelial cells (HUVECs). In this study, we found that VEGF was up regulated both at mRNA and protein levels in HUVECs treated with HBO dose- and time-dependently. Since there are several AP-1 sites in the VEGF promoter, and the c-Jun/AP-1 is activated through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and extracellular signal regulated kinase (ERK), we further examined the c-Jun, JNK and ERK that might be involved in the VEGF induced by HBO. The VEGF mRNA induced by HBO was blocked by both PD98059 and SP600125, the ERK and JNK inhibitors respectively. HBO induced phospho-ERK and phospho-JNK expressions within 15 min. We further demonstrated that c-Jun phosphorylation was induced within 60 min of HBO treatment. HBO also induced the nuclear AP-1 binding ability within 30–60 min, but the AP-1 induction was blocked by treatment with either the ERK or JNK inhibitor. To verify that the VEGF expression induced by HBO is through the AP-1 trans-activation and VEGF promoter, both the VEGF promoter and AP-1 driving luciferase activity were found increased by the cells treated with HBO. The c-Jun mRNA, which is also driven by AP-1, was also induced by HBO, and the induction of c-Jun was blocked by ERK and JNK inhibitors. We suggest that VEGF induced by HBO is through c-Jun/AP-1 activation, and through simultaneous activation of ERK and JNK pathways.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号