首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of carbachol on catecholamine secretion and [32P]Pi incorporation into phospholipids was studied in perfused bovine adrenal medulla. After a labelling period, the gland was stimulated with carbachol in the absence of 32P. Subcellular fractions were then prepared from the medulla. Carbachol roughly halved the specific radioactivities of phosphatidylinositol and phosphatidate in microsomal, chromaffin-granule, mitochondrial and plasma-membrane fractions. With Ca2+-free perfusion medium, catecholamine secretion was abolished but the phospholipid changes remained. Stimulation of secretion by KCl was not accompanied by phospholipid changes. The results are not consistent with the theory relating phosphatidylinositol hydrolysis and Ca2+ gating.  相似文献   

2.
The intracerebral injection of 32Pi into guinea-pig cortex resulted in a steady rate of incorporation into all phospholipids over a 20 h period. The specific radioactivities of phosphatidate and phos-phatidylinositol in synaptosomes prepared from cortex prelabelled, in vivo, were at a maximum after 2 h and the respective activities were 3–8 times higher than in whole cortex. This peak in labelling corresponded with the maximum specific activity of the brain ATP. No similar differential labelling pattern was observed for phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine. Electrical stimulation of the prelabelled synaptosomes produced a rapid drop in the specific activity of phosphatidylinositol and phosphatidate and an increase in the specific activity of CDP-diacylglycerol. The specific activity of synaptosomal ATP was not affected. Study of the subsynaptosomal fractions obtained after osmotic rupture of the synaptosomes revealed that the most highly labelled phosphatidylinositol was in the synaptic vesicle fraction (D) and the most active phosphatidate was in a ‘microsomal’ fraction (E). Electrical stimulation caused a loss of phosphatidylinositol radioactivity from fraction D and a loss of phosphatidate radioactivity from fraction E. The specific activity of these lipids in other fractions was not affected. A possible role for presynaptic phosphatidylinositol is suggested.  相似文献   

3.
1. Addition of the bivalent ionophore A23187 to synaptosomes isolated from guinea-pig brain cortex and labelled with [(32)P]phosphate in vitro or in vivo caused a marked loss of radioactivity from phosphatidyl-myo-inositol 4-phosphate (diphosphoinositide) and phosphatidyl-myo-inositol 4,5-bisphosphate (triphosphoinositide) and stimulated labelling of phosphatidate. No change occurred in the labelling of other phospholipids. 2. In conditions that minimized changes in internal Mg(2+) concentrations, the effect of ionophore A23187 on labelling of synaptosomal di- and tri-phosphoinositide was dependent on Ca(2+) and was apparent at Ca(2+) concentrations in the medium as low as 10(-5)m. 3. An increase in internal Mg(2+) concentration stimulated incorporation of [(32)P]phosphate into di- and tri-phosphoinositide, whereas lowering internal Mg(2+) decreased labelling. 4. Increased labelling of phosphatidate was independent of medium Mg(2+) concentration and apparently only partly dependent on medium Ca(2+) concentration. 5. The loss of label from di- and tri-phosphoinositide caused by ionophore A23187 was accompanied by losses in the amounts of both lipids. 6. Addition of excess of EGTA to synaptosomes treated with ionophore A23187 in the presence of Ca(2+) caused a rapid resynthesis of di- and tri-phosphoinositide and a further stimulation of phosphatidate labelling. 7. Addition of ionophore A23187 to synaptosomes labelled in vivo with [(3)H]inositol caused a significant loss of label from di- and tri-phosphoinositide, but not from phosphatidylinositol. There was a considerable rise in labelling of inositol diphosphate, a small increase in that of inositol phosphate, but no significant production of inositol triphosphate. 8. (32)P-labelled di- and tri-phosphoinositides appeared to be located in the synaptosomal plasma membrane. 9. The results indicate that increased Ca(2+) influx into synaptosomes markedly activates triphosphoinositide phosphatase and diphosphoinositide phosphodiesterase, but has little or no effect on phosphatidylinositol phosphodiesterase.  相似文献   

4.
Abstract— Paired vagus nerves, phrenic nerves or superior cervical ganglia from rats were incubated at 37 C for various times in a simple salt solution containing glucose and 32Pi. One of the pair was usually stimulated electrically for 30 or 60 min. Stimulation of vagus nerve for 30 min increased phosphate incorporation into all the phospholipids studied but the increase was significant only in the case of triphos-phoinositide and diphosphoinositide. This increase was not accompanied by increased labelling of the nucleotide labile phosphate pool. Tetrodotoxin at concentrations sufficient to block transmission had no effect upon phospholipid labelling in vagus or phrenic nerve. Ouabain at blocking concentration did not affect polyphosphoinositide metabolism in vagus nerve but increased [32P]labelling of the other phospholipids. Hemicholinium-3 increased the labelling of all three phosphoinositides in the sympathetic ganglia but the increase in phosphatidylinositol labelling due to electrical stimulation was not seen in the presence of this inhibitor.  相似文献   

5.
Rapidly-labelled, acidic phospholipids of the goldfish brain   总被引:1,自引:0,他引:1  
Homogenates and particulate fractions of goldfish brain incorporated radioactivity from γ-[32P]ATP selectively into acidic phospholipids during brief periods of incubation. Phosphatidate and lysophosphatidate became strongly labelled and activity was also found in phosphatidyl inositol phosphate and in phosphatidyl inositol diphosphate. When tetraphenylborate (a K+-complexing agent) was added, a selective stimulation of incorporation of 32P into phosphatidate occurred. The addition of perchlorate (also known to bind K+) did not produce a similar stimulation, nor did the addition of K+ block the stimulation by tetraphenylborate. The stimulation of the labelling of phospholipids by tetraphenylborate appeared to be the result of multiple actions. Besides the evidence that it acted by stimulating the phosphoinositide phosphodiesterase of brain, data were obtained suggesting that it stimulated diglyceride kinase and blocked endogenous destruction of ATP as well. The stimulation by tetraphenylborate was blocked by addition of atropine but not of arecoline.  相似文献   

6.
Rabbit peritoneal neutrophils, disrupted by sonication, were separated into three subcellular fractions by sucrose-step-gradient centrifugation and these were analysed with respect to biochemical markers. They comprised a high-speed supernatant containing the cytosol, a light particulate fraction enriched in Golgi and plasma membranes and a heavy particulate fraction enriched in granules and nuclei. The light particulate fraction was further separated into its components, which were identified as Golgi membranes (galactosyltransferase activity) and plasma membranes ((radioactivity derived from labelling intact cells with [125I]di-iodosulphanilic acid diazonium salt and [3H]formylmethionyl-leucylphenylalanine ([3H]fMet-Leu-Phe) binding)). In cells prelabelled with [3H]glycerol, the hydrolysis of phosphatidylinositol due to cell stimulation with fMet-Leu-Phe (10 nM) was shown to occur in the light particulate fraction. The [32P]Pi-labelling of phosphatidate, which is an early consequence of phosphatidylinositol hydrolysis, also occurred in this fraction. Analytical sucrose-gradient centrifugation of the light particulate fraction showed that the stimulated increment in [32P]phosphatidate (and thus by implication the initial phosphatidylinositol breakdown) was localized in the plasma membrane.  相似文献   

7.
Abstract— Subsynaptosomal localization of stimulation of phospholipid labelling by cholinergic agents was investigated. Synaptosomes prepared from guinea-pig cortex were incubated with [32P]orthophosphate in the presence or absence of 10−3 m carbamylcholine. Following incubation and osmotic shock, lysed synaptosomes were subjected to density gradient fractionation. Subsynaptosomal fractions were examined by electron microscopy and analysed for enzyme activities and 32P-labelled lipids.
In the absence of carbamylcholine, labelled phosphatidate and phosphatidylinositol were recovered in layers and interfaces A, B, C and D formed over 0.9, 1.1, 1.2 and 1.3 m sucrose, with highest amounts of label in fractions C and D for both lipids. Carbamylcholine induced the greatest increment in these two labelled lipids in fractions A and B. This distribution correlated with the presence of acetylcholinesterase activity and membrane ghosts. No correlation was found among the four fractions between the induced increase in labelling and succinic dehydrogenase activity or with the abundance of mitochondria, synaptic vesicles, or cytoplasmic fragments identified by electron microscopy. In contrast with the increases seen in phosphatidylinositol and phosphatidate labelling, carbamylcholine caused a decrease in 32P-labelling of the polyphosphoinositides, and this effect was seen primarily in the heavier subsynaptosomal fractions, C and D.  相似文献   

8.
Synaptosomes isolated from guinea pig brain cortex were stimulated electrically in a medium containing [32P]-orthophosphate. The electrical stimulation caused increased labelling of phosphatidic acid in a synaptic vesicle fraction prepared by osmotic shock of the incubated synaptosomes. Electrical stimulation also provokes transmitter release from the synaptosomes. Both increased phosphatidate labelling and transmitter release required calcium ions in the medium. The effects are discussed in relation to earlier work with acetylcholine and the possible involvement of membrane phosphatidic acid in transmitter release by exocytosis.  相似文献   

9.
Exposure to phospholipase C increased the incorporation of [32P]Pi into phosphatidate, CMP-phosphatidate and phosphatidylinositol in rat adipose tissue and isolated adipocytes. A similar effect was observed in response to insulin and oxytocin. Theophylline, 3-isobutyl-1-methylxanthine and adenosine deaminase decreased [32P]Pi incorporation, and adenosine and N6-phenylisopropyladenosine reversed these effects. As with insulin, exposure of adipose tissue to phospholipase C stimulated oxidation of glucose, pyruvate and leucine and activated pyruvate dehydrogenase. Oxytocin and adenosine also mimicked the effects of insulin on leucine oxidation and pyruvate dehydrogenase. However, only insulin stimulated glycogen synthase activity, indicating that the regulation of synthase may be achieved by intracellular events distinct from those regulating changes in phospholipid metabolism, sugar transport and mitochondrial enzyme activities. It is postulated that exposure to phospholipase C forms diacylglycerol, which is phosphorylated to yield phosphatidate. The increased labelling of CMP-phosphatidate and phosphatidylinositol results from the conversion of phosphatidate into these lipids. The correlation between the effects of phospholipase C on phosphatidate synthesis and changes in adipose-tissue metabolism suggests the possibility that increased phosphatidate may directly or indirectly produce changes in membrane transport and enzyme activities. The pattern of phospholipid labelling produced by insulin, adenosine and oxytocin suggests that these stimuli may also increase phosphatidate synthesis, and, if so, changes in phospholipid metabolism could account for some of the metabolic actions of these stimuli.  相似文献   

10.
Abstract— Cultured pineal glands incorporated 32P into membrane phospholipids. Treatment of cultured glands with norepinephrine, which is known to stimulate membrane- bound pineal adenyl cyclase and to increase the production and secretion of melatonin, stimulated the incorporation of 32P into a phospholipid fraction of membranes and particulates containing phosphatidyl serine and phosphatidyl inositol. The labelling of other phospholipid fractions and the total 32P in the gland were not changed by norepinephrine treatment. Experiments with chronically-denervated pineal glands indicated that the effect of norepinephrine on the [32P]labelling of phospholipids occurred at a postsynaptic site. When norepinephrine-stimulated secretion of melatonin was partially inhibited by p -chlorophenylalanine (a compound which blocks the synthesis of melatonin precursors), the norepinephrine-stimulated labelling of phospholipids was still observed. Conversely, when melatonin secretion was stimulated in the absence of norepinephrine by treatment with the immediate precursor of melatonin, N -acetylserotonin, a stimulation of 32P- labelling of phospholipids did not occur. These observations suggest that the increased [32P]- labelling of a phospholipid fraction caused by the norepinephrine treatment is not related to the secretion of melatonin. This effect on phospholipids may be associated with the interaction of norepinephrine with a membrane-bound postsynaptic receptor. Stimulation by norepinephrine of [32P]-incorporation into phospholipids has not been previously reported to occur in a tissue in which cholinergic fibres are absent.  相似文献   

11.
1. The effects of phytohaemagglutinin and of a Ca2+ ionophore (A23187) on glycerolipid metabolism in lymphocytes from pig lymph nodes were compared (a) by studying the incorporation of [32P]Pi and [3H]glycerol, and (b) by following the redistribution of [3H]glycerol among the lipids caused by these agents in pulse-chase experiments. 2. Phytohaemagglutinin only stimulated 32P incorporation into phosphatidylinositol and, to a slight extent, phosphatidate. Removal of most of the extracellular Ca2+ somewhat decreased this response. 3. Ionophore A23187 stimulated the labelling of phosphatidate and phosphatidylinositol with 32P to a much greater extent than did phytohaemagglutinin: the increase in phosphatidate labelling, but not that of phosphatidylinositol, was almost abolished by the removal of extracellular Ca2+. 4. The combined effects of phytohaemagglutinin and ionophore appeared to be additive, rather than synergistic. 5. Treatment with ionophore A23187 somewhat decreased the total incorporation of [3H]glycerol into glycerolipids, possibly because it lowered cell ATP content. In these experiments di- and tri-acylglycerol behaved anomalously, triacylglycerol labelling being suppressed completely, whereas that of diacylglycerol was enhanced. The pulse-chase results revealed that triacylglycerol was converted into diacylglycerol in the ionophore-treated cells, and the availability of this diacylglycerol probably led to the enhanced labelling of phosphatidate and phosphatidylinositol in the these cells. 6. Thus an increase in intracellular Ca2+ concentration appeared to have three effects on glycerolipid metabolism: (a) slight inhibition of some metabolic step preceding phosphatidate synthesis, (b) inhibition of diacylglycerol acyltransferase and (c) activation of a triacylglycerol lipase. 7. In contrast, it seems likely that the only effect of phytohaemagglutinin is to stimulate phosphatidylinositol breakdown. 8. Pig polymorphonuclear leucocytes treated with ionophore A23187 showed metabolic changes that were similar to those demonstrated with lymphocytes. 9. A possible similarity is suggested between Ca2+-stimulated triacylglycerol lipase in lymphocytes and polymorphonuclear leucocytes and previous observations of enhanced triacylglycerol metabolism in stimulated cells whose metabolic functions involve membrane fusion.  相似文献   

12.
1. When the ionophore A23187 and Ca2+ were added to normal human erythrocytes, the incorporation of 32P into phosphatidate was enhanced within 1 min, but there was only slight labelling of other phospholipids. 2. Labelling of phosphatidate in these cells did not continue to increase after about 20min at 37 degrees C; by this time, radioactivity in phosphatidate was about ten times higher inionophore A23187-treated cells than in controls. A net synthesis of phosphatidate was measured in response to the increase in intracellular Ca2+ concentration; the content of this phospholipid in the cell was increased by approximately 50%. 3. In the presence of 2.5 mM-Ca2+ a maximum effect was seen with about 0.5 mug of ionophore/ml. 4. The concentration of Ca2+ giving half-maximal labelling of phosphatidate in the presence of 10 mug of ionophore A23187/ml was about 10 muM. 5. A rapid decrease of ATP content in the cell occurred in ionophore-treated cells. 6. Labelling of phosphatidate appeared to be secondary to the production of 1,2-diacylglycerol in the cells; accumulation of 1,2-diacylglycerol was only seen after about 15 min. After 60 min, the 1,2-diacylglycerol content of the cells was five to seven times that of untreated control cells. 7. The change in the shape of erythrocytes treated with Ca2+ and ionophore appeared to be related to accumulation of 1,2-diacylglycerol. 8. The source of 1,2-diacylglycerol has not been definitely identified, but its fatty acid compositon was similar to that of phosphatidylcholine. However, it has an unusually high content of hexadecenoic acid, a fatty acid not common in the major erythrocyte phospholipids. 9. Accumulation of 1,2-diacyglycerol also occurred in energy-starved cells, even in the absence of calcium; in this case it appeared to be produced by phosphatidate breakdown.  相似文献   

13.
The possibility that Ca2+ ions are involved in the control of the increased phosphatidylinositol turnover which is provoked by alpha-adrenergic or muscarinic cholinergic stimulation of rat parotid-gland fragments has been investigated. Both types of stimulation provoked phosphatidylinositol breakdown, which was detected either chemically or radiochemically, and provoked a compensatory synthesis of the lipid, detected as an increased rate of incorporation of 32Pi into phosphatidylinositol. Acetylcholine had little effect on the incorporation of labelled glycerol, whereas adrenaline stimulated it significantly, but to a much lower extent than 32P incorporation: this suggests that the response to acetylcholine was entirely accounted for by renewal of the phosphorylinositol head-group of the lipid, but that some synthesis de novo was involved in the response to adrenaline. The responses to both types of stimulation, whether measured as phosphatidylinositol breakdown or as phosphatidylinositol labelling, occurred equally well in incubation media containing 2.5 mm-Ca2+ or 0.2 mm-EGTA [ethanedioxybis(ethylamine)-tetra-acetic acid]. Incubation with a bivalent cation ionophore (A23187) led to a small and more variable increase in phosphatidylinositol labelling with 32Pi, which occurred whether or not Ca2+ was available in the extracellular medium: this was not accompanied by significant phosphatidylinositol breakdown. Cinchocaine, a local anaesthetic, produced parallel increases in the incorporation of Pi and glycerol into phosphatidylinositol. This is compatible with its known ability to inhibit phosphatidate phosphohydrolase (EC 3.1.3.4) and increase phosphatidylinositol synthesis de novo in other cells. These results indicate that the phosphatidylinositol turnover evoked by alpha-adrenergic or muscarinic cholinergic stimuli in rat parotid gland probably does not depend on an influx of Ca2+ into the cells in response to stimulation. This is in marked contrast with the K+ efflux from this tissue, which is controlled by the same receptors, but is strictly dependent on the presence of extracellular Ca2+. The Ca2+-independence of stimulated phosphatidylinositol metabolism may mean that it is controlled through a mode of receptor function different from that which controls other cell responses. Alternatively, it can be interpreted as indicating that stimulated phosphatidylinositol breakdown is intimately involved in the mechanisms of action of alpha-adrenergic and muscarinic cholinergic receptor systems.  相似文献   

14.
1. The membrane-bound phosphatidate-dependent phosphatidic acid phosphatase activity of rat lung has been investigated in cytosol and microsomal fractions using as a substrate [32P]phosphatidate bound to heat inactivated rat liver microsomes. Both activities demonstrated broad pH optima with a maximum of 7.4--8 for the cytosol and a maximum of 6.5--7.5 with microsomal preparations. 2. At low concentrations (0--5 mM) Mg2+ produced a slight stimulation of the cytosol activity but at higher concentrations an inhibition was observed. Low concentrations (1.0--2.0 mM) of EDTA abolished the cytosol activity and reduced the microsomal activity to half. In both cases, the addition of Mg2+ in the presence of EDTA resulted in an activity which was more than 2-fold greater than that observed in the absence of chelator or divalent cation. 3. The cytosol activity was relatively resistant to the addition of ionic and nonionic detergents. In general, the addition of a number of phosphate esters increased rather than decreased the release of 32Pi, indicating a relative specificity for phosphate groups associated with a hydrophobic environment. The addition of aqueous dispersions of phosphatidate, lysophosphatidic acid or phosphatidylglycerophosphate markedly reduced the hydrolysis of membrane-bound [32P]phosphatidate. The cytosol activity was slightly inhibited by the addition of phosphatidylcholine. 4. In an attempt to estimate the relative contributions of the cytosol and microsomal activities in vivo, these activities were assayed using [32P]phosphatidate endogenously generated on rat lung microsomes. With the 32P-labelled microsomes, the hydrolysis remained linear over the 45 min of the experiment. Addition of high speed supernatant produced a rapid release of 32Pi during the first 10 min followed by a more gradual release similar to that oberved with the microsomes alone. The cytosol activity remained greater than the microsomal activity at all times studied. 5. When [14C]phosphatidate-labelled microsomes were incubated in the presence of nonradioactive CDPcholine, the addition of cytosol markedly stimulated the incorporation of radioactivity into phosphatidylcholine. This observation suggests that the phosphatidic acid phosphatase activity associated with the cytosol has a role in phosphatidylcholine (and presumably surfactant) biosynthesis in rat lung.  相似文献   

15.
Calcium and the Muscarinic Synaptosomal Phospholipid Labeling Effect   总被引:14,自引:9,他引:5  
Abstract: The role of calcium in the muscarinic phospholipid labeling effect in synaptosomes has been investigated. In the absence of added calcium, acetylcholine doubled phosphatidate labeling and increased phosphatidy linositol labeling 40% in synaptosomes when incubated in a medium that contained [32P]orthophosphate. Inclusion of calcium or the omission of magnesium resulted in a marked elevation of acetylcholine-stimulated phosphatidylinositol labeling (70–80%) while phosphatidate stimulation was unaltered. Calciumchelating agents, EGTA and EDTA, reduced the stimulated labeling of both phosphatidate and phosphatidylinositol, but this inhibition could be reversed by calcium addition. The calcium ionophore A23187, which promotes entry of calcium into cells, selectively increased labeling of both phosphatidate and phosphatidyl-inositol. This effect, unlike acetylcholine-stimulated labeling, was not blocked by the addition of atropine. The calcium dependency of the acetylcholine stimulation, on the one hand, and the insensitivity of the ionophore to a muscarinic antagonist, on the other, argue strongly that the acetylcholine-receptor interaction regulates calcium mobilization and that the latter is linked to the stimulated labeling of phosphatidate and phosphatidylinositol.  相似文献   

16.
Carbamylcholine enhances the labeling of phosphatidate and phosphatidylinositol from 32Pi in nerve endings. Approximately 74% of labeled phosphatidate and 85% of labeled phosphatidylinositol produced on muscarinic stimulation are accounted for by tetraenoic species, as detected by argentation TLC. Incubation of membranes derived from nerve endings with [gamma-32P]ATP under conditions of phosphodiesteratic degradation of endogenous polyphosphoinositides resulted in increased labeling of phosphatidate. Approximately 78% of the newly formed phosphatidate was in a tetraenoic fraction. It is concluded that in muscarinically stimulated nerve endings, the diacylglycerol moiety is conserved following diacylglycerol release from polyphosphoinositides through its resynthesis to inositol lipid via phosphatidate.  相似文献   

17.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

18.
1. The absorption of glucose and alpha-methyl-D-glucoside by Hymenolepis diminuta was concentration dependent. 2. alpha-Methyl-D-glucoside competitively inhibited glucose absorption and was not metabolised by the parasite. 3. alpha-Methyl-D-glucoside significantly lowered (P less than 0.05) the incorporation of 32Pi into all phospholipid classes. 4. Glucose inhibited (P less than 0.01) 32Pi incorporation into phosphatidylcholine only. 5. Phlorizin did not affect 32Pi labelling of phospholipids. 6. Serotonin and histamine stimulated (P less than 0.01) 32Pi labelling of all phospholipid classes. 7. Radioactivities in water soluble fractions were increased (P less than 0.01) in the presence of glucose, serotonin and histamine.  相似文献   

19.
Isolated rat hepatocytes responded to a variety of Ca2+-mobilizing agents (vasopressin, angiotensin II, epinephrine, epidermal growth factor, ATP, and ADP) with a rapid increase in phosphatidate mass, as measured by a sensitive new method. When hepatocytes were incubated with vasopressin (10(-8) M), phosphatidate levels increased 2-3-fold in 2 min, but there was no significant increase in diacylglycerol at this time. Changes in the fatty acid composition of phosphatidate also preceded those in diacylglycerol. De novo synthesis of phosphatidate from [3H]glycerol was unaffected by vasopressin in short-term incubation. Incubation of washed rat liver plasma membranes with GTP gamma S caused a time-dependent increase in phosphatidate. When membranes were incubated with GTP gamma S and [gamma-32P]ATP, no incorporation of 32P into phosphatidate was observed. This excludes the phospholipase C-diacylglycerol kinase pathway and suggests that a phospholipase D activity produced the phosphatidate. At submaximal concentrations of GTP gamma S, ATP and ADP stimulated membrane phosphatidate formation, presumably by acting through P2-purinergic receptors. Only phosphatidylcholine, among the major phospholipids, decreased in the membranes in response to GTP gamma S. The fatty acid composition of the phosphatidate produced in response to vasopressin in hepatocytes also suggests that phosphatidylcholine may be the source of hormonally elicited phosphatidate. We conclude that Ca2+-mobilizing hormones mainly increase phosphatidate levels in hepatocytes by a mechanism that does not involve phosphorylation of diacylglycerol or de novo synthesis but involves a guanine nucleotide-binding protein coupled to phospholipase D.  相似文献   

20.
Synaptosomes prepared from guinea-pig cerebral cortex were suspended in a medium containing [32P]orthophosphate and subjected to electrical stimulation. When the synaptosomal phospholipids were subsequently separated, the most highly labelled was phosphatidic acid and electrical stimulation over a 10 min period increased incorporation of 32P1 into this lipid. Stimulated synaptosomes were osmotically lysed and subsynaptosomal fractions isolated. The electrically stimulated increase in phosphatidic acid labelling was localized in a fraction enriched in synaptic vesicles. This phospholipid effect was not merely a reflection of an increased specific radioactivity of synaptosomal ATP, due to the electrically stimulated increase in respiration. The time course of the phosphatidic acid effect suggests that it is synchronous with release of transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号