首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Using Lactococcus lactis for glutathione overproduction   总被引:5,自引:0,他引:5  
Glutathione and -glutamylcysteine were produced in Lactococcus lactis using a controlled expression system and the genes gshA and gshB from Escherichia coli encoding the enzymes -glutamylcysteine synthetase and glutathione synthetase. High levels of -glutamylcysteine were found in strains growing on chemically defined medium and expressing either gshA alone or both gshA and gshB. As anticipated, glutathione was found in a strain expressing gshA and gshB. The level of glutathione production could be increased by addition of the precursor amino acid cysteine to the medium. The addition of cysteine led to an increased activity of glutathione synthetase, which is remarkable because the amino acid is not a substrate of this enzyme. The final intracellular glutathione concentration attained was 358 nmol mg–1 protein, which is the highest concentration reported for a bacterium, demonstrating the suitability of engineered L. lactis for fine-chemical production and as a model for studies of the impact of glutathione on flavour formation and other properties of food.  相似文献   

3.
It is now generally recognized that cell growth conditions in nature are often suboptimal compared to controlled conditions provided in the laboratory. Natural stresses like starvation and acidity are generated by cell growth itself. Other stresses like temperature or osmotic shock, or oxygen, are imposed by the environment. It is now clear that defense mechanisms to withstand different stresses must be present in all organisms. The exploration of stress responses in lactic acid bacteria has just begun. Several stress response genes have been revealed through homologies with known genes in other organisms. While stress response genes appear to be highly conserved, however, their regulation may not be. Thus, search of the regulation of stress response in lactic acid bacteria may reveal new regulatory circuits. The first part of this report addresses the available information on stress response in Lactococcus lactis.Acid stress response may be particularly important in lactic acid bacteria, whose growth and transition to stationary phase is accompanied by the production of lactic acid, which results in acidification of the media, arrest of cell multiplication, and possible cell death. The second part of this report will focus on progress made in acid stress response, particularly in L. lactis and on factors which may affect its regulation. Acid tolerance is presently under study in L. lactis. Our results with strain MG1363 show that it survives a lethal challenge at pH 4.0 if adapted briefly (5 to 15 minutes) at a pH between 4.5 and 6.5. Adaptation requires protein synthesis, indicating that acid conditions induce expression of newly synthesized genes. These results show that L. lactis possesses an inducible response to acid stress in exponential phase.To identify possible regulatory genes involved in acid stress response, we determined low pH conditions in which MG1363 is unable to grow, and selected at 37°C for transposition insertional mutants which were able to survive. About thirty mutants resistant to low pH conditions were characterized. The interrupted genes were identified by sequence homology with known genes. One insertion interrupts ahrC, the putative regulator of arginine metabolism; possibly, increased arginine catabolism in the mutant produces metabolites which increase the pH. Several other mutations putatively map at some step in the pathway of (p)ppGpp synthesis. Our results suggest that the stringent response pathway, which is involved in starvation and stationary phase survival, may also be implicated in acid pH tolerance.  相似文献   

4.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

5.
6.
The effect of plasmid content on growth of Lactococcus lactis ssp. diacetylactis harboring different plasmids and on plasmid stability was studied. Strain DRC-2C is a plasmid Lac(+)- and Prt(+)-free strain. Strain DRC-2 utilizes lactose as carbohydrate and has proteinase activity. The plasmid-free strain DRC-2C exhibited none of these features. Plasmid-encoded properties were clearly identified. Results showed that plasmid content decreased bacterial growth in terms of the specific growth rate determined. Slightly lower specific growth rate and lactic acid production were observed in the strain of higher plasmid content owing to the plasmid presence, causing metabolic burden to the host cell. The plasmid profile results showed that the number of bands in the two strains before and after fermentation were the same. This indicated that the plasmids were stably maintained and unchanged during the fermentation.  相似文献   

7.
The minimal growth requirements for two strains of Clostridium perfringens were defined, and both synthetic and semisynthetic plating media were developed. Plate counts of the wild-type strains on both of these minimal media were equivalent to those on complex media. A number of auxotrophic mutants of each strain were isolated, and their phenotypes were defined.  相似文献   

8.
Growth of Lactococcus lactis subsp. lactis biovar diacetylactis was observed on media with citrate as the only energy source. At pH 5.6, steady state was achieved in a chemostat on a citrate-containing medium in the absence of a carbohydrate. Under these conditions, pyruvate, acetate, and some acetoin and butanediol were the main fermentation products. This indicated that energy was conserved in L. lactis subsp. lactis biovar diacetylactis during citrate metabolism and presumably during the conversion of citrate into pyruvate. The presumed energy-conserving step, decarboxylation of oxaloacetate, was studied in detail. Oxaloacetate decarboxylase was purified to homogeneity and characterized. The enzyme has a native molecular mass of approximately 300 kDa and consists of three subunits of 52, 34, and 12 kDa. The enzyme is apparently not sodium dependent and does not contain a biotin moiety, and it seems to be different from the energy-generating oxaloacetate decarboxylase from Klebsiella pneumoniae. Energy-depleted L. lactis subsp. lactis biovar diacetylactis cells generated a membrane potential and a pH gradient immediately upon addition of citrate, whereas ATP formation was slow and limited. In contrast, lactose energization resulted in rapid ATP formation and gradual generation of a proton motive force. These data were confirmed during studies on amino acid uptake. α-Aminoisobutyrate uptake was rapid but glutamate uptake was slow in citrate-energized cells, whereas lactose-energized cells showed the reverse tendency. These data suggest that, in L. lactis subsp. lactis bv. diacetylactis, a proton motive force could be generated during citrate metabolism as a result of electrogenic citrate uptake or citrate/product exchange together with proton consumption by the intracellular oxaloacetate decarboxylase.  相似文献   

9.
10.
A nisin-resistant Lactococcus lactis strain TML01 was isolated from crude milk. A gene with 99% homology to the nisin-resistance gene, nsr, was identified. The food-grade secretion plasmid, pLEB690 (3746 bp), was constructed based on this novel nsr gene enabling primary selection with up to 5 μg nisin/ml. The functionality of pLEB690 as a secretion vector was shown by expressing and secreting the pediocin AcH gene papA in L. lactis. pLEB690 is therefore, a functional food-grade secretion vector potentially useful for the food industry.  相似文献   

11.
Comparative genome analyses contribute significantly to our understanding of bacterial evolution and indicate that bacterial genomes are constantly evolving structures. The gene content and organisation of chromosomes of lactic acid bacteria probably result from a strong evolutionary pressure toward optimal growth of these microorganisms in milk. The genome plasticity of Lactococcus lactis was evaluated at inter- and intrasubspecies levels by different experimental approaches. Comparative genomics showed that the lactococcal genomes are not highly plastic although large rearrangements (a.o. deletions, inversions) can occur. Experimental genome shuffling using a new genetic strategy based on the Cre-loxP recombination system revealed that two domains are under strong constraints acting to maintain the original chromosome organisation: a large region around the replication origin, and a smaller one around the putative terminus of replication. Future knowledge of the rules leading to an optimal genome organisation could facilitate the definition of new strategies for industrial strain improvement.  相似文献   

12.
Lysozyme expression in Lactococcus lactis   总被引:1,自引:0,他引:1  
Summary Three lysozyme-encoding genes, one of eukaryotic and two of prokaryotic origin, were expressed in Lactococcus lactis subsp. lactis. Hen egg white lysozyme (HEL) could be detected in L. lactis lysates by Western blotting. No lysozyme activity was observed, however, presumably because of the absence of correctly formed disulphide bonds in the L. lactis product. The functionally related lysozymes of the E. coli bacteriophages T4 and were produced as biologically active proteins in L. lactis. In both cases, the highest expression levels were obtained using configurations in which the bacteriophage lysozyme genes had been translationally coupled to a short open reading frame of lactococcal origin. Both enzymes, like HEL, may prevent the growth of food-spoilage bacteria.  相似文献   

13.
Abstract Lactic acid bacteria are of major economic importance, as they occupy a key position in the manufacture of fermented foods. A considerable body of research is currently being devoted to the development of lactic acid bacterial strains with improved characteristics, that may be used to make fermentations pass of more efficiently, or to make new applications possible. Therefore, and because the lactococci are designated 'GRAS' organisms ('generally recognized as safe') which may be used for safe production of foreign proteins, detailed knowledge of homologous and heterologous gene expression in these organisms is desired. An overview is given of our current knowledge concerning gene expression in Lactococcus lactis . A general picture of gene expression signals in L. lactis emerges that shows considerable similarity to those observed in Escherichia coli and Bacillus subtilis . This feature allowed the expression of a number of L. lactis -derived genes in the latter bacterial species. Several studies have indicated, however, that in spite of the similarities, the expression signals from E. coli, B. subtilis and L. lactis are not equally efficient in these three organisms.  相似文献   

14.
A nucleoside N-deoxyribosyltransferase-homologous gene was detected by homological search in the genomic DNA of Lactococcus lactis subsp. lactis. The gene yejD is composed of 477 nucleotides encoding 159 amino acids with only 25% identity, which is low in comparison to the amino acid sequences of the N-deoxyribosyltransferases from other lactic acid bacteria, i.e. Lactobacillus leichmannii and Lactobacillus helveticus. The residues responsible for catalytic and substrate-binding sites in known enzymes are conserved at Gln49, Asp73, Asp93 (or Asp95), and Glu101, respectively. The recombinant YejD expressed in Escherichia coli shows a 2-deoxyribosyl transfer activity to and from both bases of purine and pyrimidine, showing that YejD should be categorized as a class II N-deoxyribosyltransferase. Interestingly, the base-exchange activity as well as the heat stability of YejD was enhanced by the presence of monovalent cations such as K(+), NH(4)(+), and Rb(+), indicating that the Lactococcus enzyme is a K(+)-activated Type II enzyme. However, divalent cations including Mg(2+) and Ca(2+) significantly inhibit the activity. Whether or not the yejD gene product actually participates in the nucleoside salvage pathway of Lc. lactis remains unclear, but the lactic acid bacterium possesses the gene coding for the nucleoside N-deoxyribosyltransferase activated by K(+) on its genome.  相似文献   

15.
Oxidative stress in Lactococcus lactis   总被引:1,自引:0,他引:1  
Lactococcus lactis, the most extensively characterized lactic acid bacterium, is a mesophilic- and microaerophilic-fermenting microorganism widely used for the production of fermented food products. During industrial processes, L. lactis is often exposed to multiple environmental stresses (low and high temperature, low pH, high osmotic pressure, nutrient starvation and oxidation) that can cause loss or reduction of bacterial viability, reproducibility, as well as organoleptic and/or fermentative qualities. Among these stress factors, oxidation can be considered one of the most deleterious to the cell, causing cellular damage at both molecular and metabolic levels. During the last two decades, considerable efforts have been made to improve our knowledge of oxidative stress in L. lactis. Many genes involved with both oxidative stress resistance and control mechanisms have been identified; functionally they seem to overlap. The finding of new genes, and a better understanding of the molecular mechanisms of stress resistance in L. lactis and other lactic acid bacterium, will lead to the construction and isolation of stress-resistant strains. Such strains could be exploited for both traditional and probiotic uses.  相似文献   

16.
17.
When Lactococcus lactis was grown in various complex or synthetic media, the fermentation of glucose remained homolactic whatever the medium used, with a global carbon balance of about 87%. Moreover, the nitrogen balance was not equilibrated, indicating that some amino acids led to the production of unknown nitrogen-containing carbon compounds while part of the glucose might contribute to anabolic pathways. In minimal medium containing six amino acids, a high concentration of serine was deaminated to pyruvate. This did not occur in more complete media, suggesting the presence of a regulation of this phenomenon by an amino acid. Ammonia produced during serine consumption was partly reconsumed after serine exhaustion. The values for biomass yield and biomass yield relative to ATP (Y(infATP)), the maximal growth rate, the specific rate of glucose consumption, and the corresponding rate of ATP synthesis all increased with the complexity of the medium, amino acid composition having the most pronounced effect. The Y(infATP) values were shown to range from 6.6 to 17.6 g of biomass(middot)mol of ATP(sup-1) on minimal and complex media.  相似文献   

18.
A semidefined medium based on Casamino Acids allowed Lactococcus lactis ATCC 19435 to grow in the presence of oxygen at a slow rate (0.015 h−1). Accumulation of H2O2 in the culture prevented a higher growth rate. Addition of asparagine to the medium increased the growth rate, whereby H2O2 accumulated only temporarily during the lag phase. H2O2 is an inhibitor for several glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase being the most sensitive. Strain ATCC 19435 contained NADH oxidase (maximum specific rate under aerobic conditions, 426 nmol of NADH min−1 mg of protein−1), which reduced oxygen to water, whereby superoxide was formed as a by-product. H2O2 originated from the dismutation of superoxide by superoxide dismutase. Although H2O2 was rapidly destroyed under high metabolic fluxes, neither NADH peroxidase nor any other enzymatic H2O2-reducing activity was detected. However, pyruvate, the end product of glycolysis, reacted nonenzymatically and rapidly with H2O2 and hence was a potential alternative for scavenging of this oxygen metabolite intracellularly. Indeed, intracellular concentrations of up to 93 mM pyruvate were detected in aerobic cultures growing at high rates. It is hypothesized that self-generated pyruvate may serve to protect L. lactis strain ATCC 19435 from H2O2.  相似文献   

19.
Three different techniques for bacterial mating were applied to wild type and culture collection strains of Lactococcus lactis harbouring transposons: direct plate conjugation, filter mating and mating on milk agar. Efficiencies and frequencies of transfer were compared. Transconjugants were characterized by marker properties and molecular assays. Transposon-coded Suc+ Nis+ phenotype as well as Suc+ Bac+ Nis- phenotype were transferred with frequencies ranging between 10-9 and 10-6. Milk agar plate mating was the best technique for obtaining gene transfer events involving wild type lactococci.  相似文献   

20.
Summary Cell wall-associated proteinases were isolated from Lactococcus lactis subsp. cremoris AC1 and subsp. lactis NCDO 763 in order to compare their specificities towards different caseins. Two purification strategies were applied. Cells grown in casein-free M17 medium were a suitable starting material for purification, since electrophoretic purity could be achieved after one chromatographic step. Both enzymes has an apparent molecular mass of about 145000 daltons as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Electrophoresis and reversed phase HPLC patterns of hydrolysates of s1-, s2-, -, and K-caseins indicated that both proteinases had a similar specificity. The enzyme of L. lactis subsp. lactis split s1- and s2-caseins more extensively than that of L. lactis subsp. cremoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号