首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A fucoxanthin-chlorophyll protein (FCP) cDNA from the raphidophyte Heterosigma carterae encodes a 210-amino acid polypeptide that has similarity to other FCPs and to the chlorophyll a/b-binding proteins (CABs) of terrestrial plants and green algae. The putative transit sequence has characteristics that resemble a signal sequence. The Heterosigma fcp genes are part of a large multigene family which includes members encoding at least two significantly different polypeptides (Fcp1, Fcp2). Comparison of the FCP sequences to the recently determined three-dimensional structure of the pea LHC II complex indicates that many of the key amino acids thought to participate in the binding of chlorophyll and the formation of complex-stabilizing ionic interactions are well conserved. Phylogenetic analyses of sequences of light-harvesting proteins shows that the FCPs of several chromophyte phyla form a natural group separate from the intrinisic peridinin-chlorophyll proteins (iPCPs) of the dinoflagellates. Although the FCP and CAB genes shared a common ancestor, these lineages diverged from each other prior to the separation of the CAB LHC I and LHC II sequences in the green algae and terrestrial plants. Received: 8 July 1996 / Accepted: 21 August 1996  相似文献   

2.
Summary We have cloned and characterized members of a gene family encoding polypeptide constituents of the fucoxanthin, chlorophyll a/c protein complex, a light-harvesting complex associated with photosystem II of diatoms and brown algae. Three cDNA clones encoding proteins associated with this complex in the diatom Phaeodactylum tricornutum have been isolated. As deduced from the nucleotide sequences, these light-harvesting proteins show homology to the chlorophyll a/b binding polypeptides of higher plants. Specifically, the N-terminal regions of the fucoxanthin, chlorophyll a/c-binding proteins are homologous to the chlorophyll a/b binding proteins in both the third membrane-spanning domain and the stroma-exposed region between membrane-spanning domains 2 and 3. Like the chlorophyll a/b-binding proteins, the mature fucoxanthin, chlorophyll a/c polypeptides have three hydrophobic -helical domains which could span the membrane bilayer. The similarities between the two light-harvesting proteins might reflect the fact that both bind chlorophyll molecules and/or might be important for maintaining certain structural features of the complex. There is little similarity between the N-terminal sequences of the primary translation products of the fucoxanthin, chlorophyll a/c proteins and any transit sequences that have been characterized. Instead, the N-terminal sequences have features resembling those of signal sequences. Thus either transit peptides used in P. tricornutum show little resemblance to those of higher plants and green algae or the nuclear-encoded plastid proteins enter the organelle via a mechanism different from that used in higher plants.  相似文献   

3.
Two cDNA clones encoding fucoxanthin chlorophyll a/c-binding proteins (FCP) in the diatom Odontella sinensis have been cloned and sequenced. The derived amino acid sequences of both clones are identical, comparison of the corresponding nucleic acids reveals differences only in the third codon position, suggesting a recent gene duplication. The derived proteins are similar to the chlorophyll a/b-binding proteins of higher plants. The presequences for plastid import resemble signal sequences for cotranslational import rather than transit peptides of higher plants. They are very similar to the presequences of FCP proteins in the diatom Phaeodactylum, but different from the presequences of the -subunit of CF0CF1 of Odontella and the peridinin chlorophyll a binding proteins (PCP) of the dinoflagellate Symbiodinium.Abbreviations CAB chlorophyll a/b-binding protein - FCP fucoxanthin chlorophyll a/c-binding protein - fcp the respective FCP genes - LHC light-harvesting complex - PCP peridinin chlorophyll a-binding protein - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

4.
Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.  相似文献   

5.
A method was established to investigate the steady state levels of mRNAs from genes encoding fucoxanthin chlorophyll a/c binding proteins (Fcp) of diatoms in situ. During the study, which was performed with Wadden Sea sediments from the German North Sea shore near Dangast, oxygenic photosynthesis was carried out mainly by pennate diatoms. Field samples were taken after tidal exposure from dawn up to late afternoon at 2-hourly intervals, and frozen in liquid nitrogen. In the laboratory, total RNA was isolated by isopycnic ultracentrifugation in caesium chloride gradients. Yields of approximately 10–300 μg RNA per gram wet sediment were obtained. Defined amounts of total RNA were blotted onto nylon membranes and hybridised with probes against the fcp2 and 18S rDNA genes of Cyclotella cryptica. To estimate the steady state amount of fcp mRNAs, fcp signal intensities were normalized to the signal intensities obtained from hybridisation to an 18S rDNA gene probe. In the two time-course studies performed to demonstrate the applicability of the method, the steady state levels of fcp mRNA increased up to 12-fold with the onset of light, reaching a maximum 6–8 h after sunrise before they decreased again. Possible reasons for this time-course are discussed. Electronic Publication  相似文献   

6.
Abstract: Two additional cDNA clones containing genes which encode fucoxanthin chlorophyll a/c binding proteins (Fcps) of the centric diatom Cyclotella cryptica have been sequenced. The first cDNA clone containing fcp12 had an insert size of 871 base pairs (bp). The open reading frame (ORF) of 693 bp corresponds to a precursor protein of 231 amino acids with a molecular weight (Mr) of 25 200. For the mature Fcp12, a protein of 196 amino acids with a Mr of 21 700 is proposed. The second cDNA clone contained the fragmentary fcp4 with an insert of 805 bp. The ORF of 492 bp corresponds to a polypeptide of 164 amino acids with a Mr of 18 050. Phylogenetic analyses revealed that the proteins Fcp1, Fcp2, Fcp3 and Fcp5 are closely related to the Fcps of other diatoms, whereas Fcp6, Fcp7 and Fcp12 share the highest homology to the Fcp of the haptophyte Isochrysis galbana and to the light inducible proteins LI818r3 and LI818 of Chlamydomonas reinhardtii and Chlamydomonas eugametos. The subunit Fcp4 revealed some homology with the red algal LH subunits LhcaR1 and LhcaR2 of Porphyridium cruentum.  相似文献   

7.
The present study examined the protein associations and energy transfer characteristics of chlorophyll c and fucoxanthin which are the major light-harvesting pigments in the brown and diatomaceous algae. It was demonstrated that sodium dodecyl sulfate (SDS)-solubilized photosynthetic membranes of these species when subjected to SDS polyacrylamide gel electrophoresis yielded three spectrally distinct pigment-protein complexes. The slowest migrating zone was identical to complex I, the SDS-altered form of the P-700 chlorophyll a-protein. The zone of intermediate mobility contained chlorophyll c and chlorophyll a in a molar ratio of 2 : 1, possessed no fucoxanthin, and showed efficient energy transfer from chlorophyll c to chlorophyll a. The fastest migrating pigment-protein zone contained fucoxanthin and chlorophyll a, possessed no chlorophyll c, and showed efficient energy transfer from fucoxanthin to chlorophyll a. It is demonstrated that the chlorophyll ac-protein and the chlorophyll afucoxanthin-protein complexes are common to the brown algae and diatoms examined, and likely share similar roles in the photosynthetic units of these species.  相似文献   

8.
The diatom Cyclotella cryptica was grown under low- and high-intensity white light of 50 and 500 micromol photons m-2 s-1, respectively. Western immunoblotting showed that the diatom adapted its light-harvesting apparatus, giving rise to different amounts of distinct fucoxanthin chlorophyll a/c binding polypeptides (Fcp). The amount of Fcp2 was approximately two-fold higher under low-light than under high-light conditions, whereas the amount of Fcp6 increased four- to five-fold under high-light conditions. For Fcp4, no significant differences were detected in response to either light regime. Cells of Cyclotella grown under high- and low-light intensity were subjected to immunoelectron microscopy. Quantification of the gold label, expressed as gold particles per microm2, confirmed the results obtained by Western immunoblotting. Exposure to low light resulted in the detection of approximately six times more Fcp2-bound gold particles per microm2 in thylakoid membranes, whereas in cells grown under high light the number of Fcp6-bound gold particles increased ten-fold. For Fcp4, similar amounts of gold particles per microm2 were counted under the two light regimes. These immunocytochemical results confirmed molecular data derived from phylogenetic analyses of the sequences of genes encoding fucoxanthin chlorophyll a/c binding polypeptides (fcp genes) and from measurements of steady-state fcp mRNA concentrations. The results show that Fcp2 and Fcp6 accumulate under low- and high-light intensity, respectively, whereas Fcp4 seems to be constitutively synthesized.  相似文献   

9.
A light-harvesting pigment-protein complex was isolated from the diatom Phaeodactylum tricornutum using the zwitterionic detergent CHAPS (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate). Detergent-solubilized membranes were fractionated by sucrose density gradient centrifugation into three components. The medium density fraction contained chlorophyll a, chlorophyll c, and fucoxanthin. This fraction was purified by DEAE-ion exchange chromatography, and contained chlorophyll a, chlorophyll c, and fucoxanthin in a molar ratio of 2.4:1.0:4.8. Fluorescence emission and excitation spectra of the isolated complex demonstrated that light energy absorbed by chlorophyll c and fucoxanthin was coupled to chlorophyll a fluorescence. Upon denaturation, the apoprotein yielded a polypeptide doublet at 17.5 to 18.0 kilodaltons which accounted for 30 to 40% of the toal membrane protein. These findings indicate that this pigment-protein complex is a major component of the diatom photosynthetic lammellae. The quantitative amino acid composition of the apoprotein was very similar to those reported for other membrane-bound pigment-protein complexes. Based on the protein to chlorophyll a ratio of 7700 grams protein per mole chlorophyll a for the complex, each apoprotein molecule contains, to the nearest integer, two chlorophyll a, one chlorophyll c, and five fucoxanthin molecules. Polyclonal antibodies raised against the 17.5 to 18.0 kilodaltons apoprotein showed a monospecific reaction with only the 17.5 to 18.0 protein zone from denatured P. tricornutum membranes as well as to the nondenatured pigment-protein complex. It appears that this complex is common to other diatom species.  相似文献   

10.
《BBA》2022,1863(7):148589
In diatoms, light-harvesting processes take place in a specific group of proteins, called fucoxanthin chlorophyll a/c proteins (FCP). This group includes many members and represents the major characteristic of the diatom photosynthetic apparatus, with specific pigments bound (chlorophyll c, fucoxanthin, diadino- and diatoxanthin besides chlorophyll a). In thylakoids, FCP and photosystems (PS) form multimeric supercomplexes.In this study, we compared the biochemical properties of PS supercomplexes isolated from Thalassiosira pseudonana cells grown under low light or high light conditions, respectively. High light acclimation changed the molecular features of the PS and their ratio in thylakoids. In PSII, no obvious changes in polypeptide composition were observed, whereas for PSI changes in one specific group of FCP proteins were detected. As reported before, the amount of xanthophyll cycle pigments and their de-epoxidation ratio was increased in PSI under HL. In PSII, however, no additional xanthophyll cycle pigments occurred, but the de-epoxidation ratio was increased as well. This comparison suggests how mechanisms of photoprotection might take place within and in the proximity of the PS, which gives new insights into the capacity of diatoms to adapt to different conditions and in different environments.  相似文献   

11.
Solubilization of thylakoid membranes of Cyclotella cryptica with dodecyl-beta maltoside followed by sucrose density gradient centrifugation or deriphate polyacrylamide gel electrophoresis resulted in the isolation of pigment protein complexes. These complexes were characterized by absorption and fluorescence spectroscopy, sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western immunoblotting using antisera against fucoxanthin chlorophyll a/c-binding proteins and the reaction center protein D2 of photosystem II. Sucrose density gradient centrifugation yielded four bands. Band 1 consisted of free pigments with minor amounts of fucoxanthin chlorophyll a/c-binding proteins. Bands 2, 3, and 4 represented a major fucoxanthin chlorophyll a/c-binding protein fraction, photosystem II, and photosystem I, respectively. Deriphate polyacrylamide gel electrophoresis gave rise to five bands, representing photosystem I, photosystem II, two fucoxanthin chlorophyll a/c-binding protein complexes, and a band mostly consisting of free pigments. In the Western immunoblotting experiments, the specific association of two fucoxanthin chlorophyll a/c-binding proteins, Fcp2 and Fcp4, to the photosystems could be demonstrated. In vivo experiments using antibodies against phosphothreonine residues and in vitro studies using [gamma-32P]ATP showed that fucoxanthin chlorophyll a/c binding-proteins of 22 kDa became phosphorylated.  相似文献   

12.
The gene arrangement, existence of introns and the number of gene copies of genes (fcps) encoding fucoxanthin chlorophyll a/c-binding proteins (Fcps) of the centric diatom Cyclotella cryptica were investigated by polymerase chain reaction (PCR), Southern blotting and denaturing gradient gel electrophoresis (DGGE) experiments. PCR-mediated amplification of the fcp genes using chromosomal DNA as template demonstrated the absence of introns within the amplified regions. Clustering of genes could not be demonstrated in these experiments. Digestion of chromosomal DNA of Cy. cryptica followed by Southern blotting and hybridization with specific fcp probes revealed minimum and maximum values of 12 and 20, respectively, for the gene copies. In addition, the DGGE technique confirmed and strengthened the results obtained from Southern blotting experiments as amplification of gene fragments from genomic DNA with different sets of specific primers revealed values of 21 and 23, for the minimum and maximum gene copy number, respectively.  相似文献   

13.
Westermann M  Rhiel E 《Protoplasma》2005,225(3-4):217-223
Antisera were raised against the C termini of three fucoxanthin chlorophyll a/c-binding polypeptides, Fcp2, Fcp4, and Fcp6, of the centric diatom Cyclotella cryptica. Immunogold electron microscopy of ultrathin-sectioned cells indicated that Fcp2 and Fcp4 are present in almost the same amounts, whereas approximately 8- to 10-fold less gold label was registered for Fcp6. Immunogold electron microscopy of freeze-fracture replicas of thylakoid membranes showed that the C termini of at least Fcp2 and Fcp4 were located in the thylakoid lumen, thus demonstrating a 3-dimensional structure similar to that already described for the chlorophyll a/b-binding light-harvesting polypeptides of higher plants.  相似文献   

14.
In contrast to vascular plants, green algae, and diatoms, the major light-harvesting complex of the marine eustigmatophyte genus Nannochloropsis is a violaxanthin–chlorophyll a protein complex that lacks chlorophylls b and c . The isolation of a single polypeptide from the light-harvesting complex of Nannochloropsis sp. (IOLR strain) was previously reported ( Sukenik et al. 1992 ). The NH2-terminal amino acid sequence of this polypeptide was significantly similar to NH2-terminal sequences of the light-harvesting fucoxanthin, chlorophyll a/c polypeptides from the diatom Phaeodactylum tricornutum Bohlin. Using polyclonal antibodies raised to the Nannochloropsis light-harvesting polypeptide, a gene encoding this polypeptide was isolated from a cDNA expression library. The deduced amino acid sequence of the Nannochloropsis violaxanthin–chlorophyll a polypeptide reveals a 36 amino acid presequence followed by 173 amino acids that constitute the mature polypeptide. The mature polypeptide has 30%–40% sequence identity to the diatom fucoxanthin–chlorophyll a/c polypeptides and less then 27% identity to the green algal and vascular plant light-harvesting chlorophyll polypeptides that bind both chlorophylls a and b . Its molecular mass, as deduced from the gene sequence, is 18.4 kDa with three putative transmembrane helices and several residues that may be involved in chlorophyll binding. The cDNA encoding the violaxanthin–chlorophyll a polypeptide was used to isolate and characterize a 10 kb genomic fragment containing the entire gene. The open reading frame was interrupted by five introns ranging in size from 123 to 449 bp. The intron borders have typical eukaryotic GT … AG sequences.  相似文献   

15.
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.  相似文献   

16.
The chlorophyll a-chlorophyll c2-peridinin-protein (apcPC), a major light harvesting component in peridinin-containing dinoflagellates, is an integral membrane protein complex. We isolated functional acpPC from the dinoflagellate Symbiodinium. Both SDS-PAGE and electrospray ionization mass spectrometry (ESI-MS) analysis quantified the denatured subunit polypeptide molecular weight (MW) as 18 kDa. Size-exclusion chromatography (SEC) and blue native gel electrophoresis (BN-PAGE) were employed to estimate the size of native acpPC complex to be 64–66 kDa. We also performed native ESI-MS, which can volatilize and ionize active biological samples in their native states. Our result demonstrated that the native acpPC complex carried 14 to 16 positive charges, and the MW of acpPC with all the associated pigments was found to be 66.5 kDa. Based on these data and the pigment stoichiometry, we propose that the functional light harvesting state of acpPC is a trimer. Our bioinformatic analysis indicated that Symbiodinium acpPC shares high similarity to diatom fucoxanthin Chl a/c binding protein (FCP), which tends to form a trimer. Additionally, acpPC protein sequence variation was confirmed by de novo protein sequencing. Its sequence heterogeneity is also discussed in the context of Symbiodinium eco-physiological adaptations.  相似文献   

17.
Owens TG  Wold ER 《Plant physiology》1986,80(3):732-738
Three pigment-protein complexes were isolated from the marine diatom Phaeodactylum tricornutum (Bohlin) by treatment of thylakoid membrane fragments with 1% Triton X-100 at 4°C followed by centrifugation on sucrose density gradients. The major complex contains chlorophyll a, c1, c2, and the carotenoid fucoxanthin (chlorophyll a: c1: c2: fucoxanthin = 1.0: 0.09: 0.28: 2.22) bound to an apoprotein doublet of 16.4 and 16.9 kilodaltons. This complex accounts for >70% of the total pigment and 20 to 40% of the protein in the thylakoid membranes. Efficient coupling of chlorophyll c and fucoxanthin absorption to chlorophyll a fluorescence supports a light-harvesting function for the complex. A minor light-harvesting complex containing chlorophyll a, c1, and c2 but no fucoxanthin (chlorophyll a: c1: c2 = 1.0: 0.23: 0.26) was also isolated at Triton: chlorophyll a ratios between 20 and 40. These pigments are bound to a similar molecular weight apoprotein doublet. The third complex isolated was the P700-chlorophyll a protein, the reaction center of photosystem I, which showed characteristics similar to those isolated from other plant sources. The yield of the chlorophyll a/c-fucoxanthin complex was shown to respond strongly to changes in light intensity during growth, accounting for most of the changes in cellular pigmentation.  相似文献   

18.
A nuclear transformation system for the centric diatom Chaetoceros sp. has been established using two plasmids pTpfcp/nat and pTpNR/green fluorescent protein (GFP) that had been used for Thalassiosira pseudonana transformation. These contain the nourseothricin resistance gene (nat) with the fucoxanthin chlorophyll a/c binding protein (fcp) promoter/terminator from T. pseudonana and the enhanced green fluorescent protein gene (egfp), with the nitrate reductase (NR) promoter/terminator from T. pseudonana, respectively. Transformants were recovered in the presence of the antibiotic nourseothricin. One to four copies of both nat and egfp genes were integrated into genomic DNA of the transformants. Transformation efficiency was 1.5–6.0 transformants per 108 cells. This work is the first report of stable genetic transformation of Chaetoceros, which is important as not only a constituent member of marine ecosystem but also feed for aquaculture.  相似文献   

19.
20.
The psaI gene encoding the 5.2 kDa protein component (PsaI) of the photosystem I complex was cloned from the cyanobacterium Anabaena 29413. The gene is present in single copy in this cyanobacterial genome. The nucleotide sequence of a 500 bp region of the cloned DNA revealed the presence of an open reading frame encoding a 46 amino acid long polypeptide. The N-terminal 11 residues are absent in the mature polypeptide and thus represents the first identified cleavable presequence on the PsaI protein. We suggest that this presequence directs the N-terminus of the protein to the thylakoid lumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号