首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor microenvironment is a pivotal factor in tumorigenesis, and especially in progression, as the pathogenesis of cancer critically depends on the complex interactions between various microenvironmental components. A key component of the tumor immunoenvironment is the infiltration of immune cells, which has been proven to play a dual role in tumor growth and progression. This Janus two-faced function of the tumor immunoenvironment is seen in tumor infiltration by T cells, which correlates with improved patient survival, but also with the homing of multiple subsets of immunoregulatory cells that inhibit the antitumor immune response. Regulatory dendritic cells (regDCs) have recently been shown to be induced by tumor-derived factors and represent a new and potentially important player in supporting tumor progression and suppressing the development of antitumor immune responses. Our recent data reveal that different tumor cell lines produce soluble factors that induce polarization of conventional DCs into regDCs, both in vitro and in vivo. These regDCs can suppress the proliferation of pre-activated T cells and are phenotypically and functionally different from their precursors as well as the classical immature conventional DCs. Understanding the biology of regDCs and the mechanisms of their formation in the tumor immunoenvironment will provide a new therapeutic target for re-polarizing protumorigenic immunoregulatory cells into proimmunogenic effector cells able to induce and support effective antitumor immunity.  相似文献   

2.
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.  相似文献   

3.
Dendritic cells (DCs) are professional antigen-presenting cells (APCs) specialized in the stimulation of na?ve T lymphocytes, which are key components of antiviral and antitumor immunity. DCs are 'sentinels' of the immune system endowed with the mission to (1) sense invading pathogens as well as any form of tissue distress and (2) alert the effectors of the immune response. They represent a very heterogeneous population including subsets characterized by their anatomical locations and specific missions. Beyond their unique APC features, DCs exhibit a large array of effector functions that play critical roles in the induction and regulation of the cell-mediated as well as humoral immune responses. In the course of the antitumor immune response, DCs are unique in engulfing tumor cells killed by natural killer (NK) cells and cross-presenting tumor-associated antigens to cytotoxic T lymphocytes (CTLs). However, while DCs mediate antitumor immune responses by stimulating tumor-specific CTLs and NK cells, direct tumoricidal mechanisms have been recently evoked. This review addresses the other face of DCs to directly deliver apoptotic signals to stressed cells, their role in tumor cell death, and its implication in the design of DC-based cancer immunotherapies.  相似文献   

4.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

5.
The generation of successful anticancer vaccines relies on the ability to induce efficient and long-lasting immune responses to tumor antigens. In this scenario, dendritic cells (DCs) are essential cellular components in the generation of antitumor immune responses. Thus, delivery of tumor antigens to specific DC populations represents a promising approach to enhance the efficiency of antitumor immunotherapies. In the present study, we employed antibody-antigen conjugates targeting a specific DC C-type lectin receptor. For that purpose, we genetically fused the anti-DEC205 monoclonal antibody to the type 16 human papillomavirus (HPV-16) E7 oncoprotein to create a therapeutic vaccine to treat HPV-associated tumors in syngeneic mouse tumor models. The therapeutic efficacy of the αDEC205-E7 mAb was investigated in three distinct anatomical tumor models (subcutaneous, lingual and intravaginal). The immunization regimen comprised two doses of the αDEC205-E7 mAb coadministered with a DC maturation stimulus (Polyinosinic:polycytidylic acid, poly (I:C)) as an adjuvant. The combined immunotherapy produced robust antitumor effects on both the subcutaneous and orthotopic tumor models, stimulating rapid tumor regression and long-term survival. These outcomes were related to the activation of tumor antigen-specific CD8+ T cells in both systemic compartments and lymphoid tissues. The αDEC205-E7 antibody plus poly (I:C) administration induced long-lasting immunity and controlled tumor relapses. Our results highlight that the delivery of HPV tumor antigens to DCs, particularly via the DEC205 surface receptor, is a promising therapeutic approach, providing new opportunities for the development of alternative immunotherapies for patients with HPV-associated tumors at different anatomical sites.  相似文献   

6.
Most tumor-associated Ags are self proteins that fail to elicit a T cell response as a consequence of immune tolerance. Dendritic cells (DCs) generated ex vivo have been used to break tolerance against such self Ags; however, in vitro manipulation of DCs is cumbersome and difficult to control, resulting in vaccines of variable potency. To address this problem we developed a method for loading and activating DCs, in situ, by first directing sufficient numbers of DCs to peripheral tissues using Flt3 ligand and then delivering a tumor-associated Ag and oligonucleotide containing unmethylated CG motifs to these tissues. In this study, we show in three different tumor models that this method can overcome tolerance and induce effective antitumor immunity. Vaccination resulted in the generation of CD8(+) T and NK cell effectors that mediated durable tumor responses without attacking normal tissues. These findings demonstrate that unmodified tumor-associated self Ags can be targeted to DCs in vivo to induce potent systemic antitumor immunity.  相似文献   

7.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

8.
Previously, we reported that killing tumor cells in vivo with the HSV thymidine kinase/ganciclovir system generates potent antitumor immunity, determined in part by the mechanism by which the cells die and by the levels of inducible heat shock protein (hsp) expression induced during the process of cell death. Here, we show that induction of hsp70 expression induces an infiltrate of T cells, macrophages, and predominantly dendritic cells (DCs) into the tumors as well as an intratumoral profile of Th1 cytokine expression (IFN-gamma, TNF-alpha, and IL-12) and enhances immunogenicity via a T cell-mediated mechanism. In addition, the protection conferred by hsp70 is both tumor and cell specific. We also demonstrate that hsp70 targets immature APC to make them significantly more able to capture Ags. This is likely to optimize cross-priming of the infiltrating APC with tumor Ags, which are simultaneously being released by the dying cells. In addition, using an Myc epitope-tagged hsp70 expression vector, we present evidence that hsp70 released from dying tumor cells is taken up directly into DCs and may, therefore, be involved in direct chaperoning of Ags into DCs. Taken together, our data suggest that hsp70 induction serves to signal the immune system of the presence of an immunologically relevant (dangerous) situation against which an immune reaction should be raised.  相似文献   

9.
We have previously demonstrated that following the adoptive transfer of immune cells, the regression of established pulmonary metastases from a weakly immunogenic sarcoma, MCA 105, required the collaboration of two T cell subsets. In this study, we found that the critical role played by L3T4+ immune cells was to provide a helper function since tumor regression proceeded in the absence of L3T4+ immune cells if exogenous interleukin 2 (IL-2) was administered. To extend these observations, we analyzed the events leading to the induction and generation of L3T4+ and Lyt-2+ immune T cells after immunization of mice with viable tumor cells admixed with Corynebacterium parvum. The basic protocol involved immunization, surgical excision of the immunization site on day 7, and challenge with viable tumor cells on day 21. The ability of mice to reject tumor challenge provided a means to evaluate the occurrence of a systemic antitumor immunity. With the use of this experimental protocol, we have found that depletion of T cell subsets in vivo with either L3T4 or Lyt-2 monoclonal antibodies after active immunization abrogated the development of antitumor immunity. Mice immunized and depleted of L3T4+ but not Lyt-2+ T cells were able to reject tumor challenge if exogenous IL-2 was given for 7 days. However, the rejection of tumor challenge required 3 days of additional exogenous IL-2 administration. These results indicate that the induction of Lyt-2+ immune T cells depended on the helper function of L3T4+ T cells via the secretion of IL-2. In the absence of L3T4+ immune lymphocytes, the expression of antitumor immunity by Lyt-2+ immune cells could be facilitated by in vivo administration of exogenous IL-2. The induction of L3T4+ immune T cells, on the other hand, occurred independently of the Lyt-2+ T cell response because the transfer of spleen cells from Lyt-2+ cell-depleted, immunized animals was able to restore antitumor reactivity in L3T4+ cell-depleted, immunized mice. These results demonstrate the intricate cellular interactions leading to the induction as well as the expression of antitumor immunity.  相似文献   

10.
Dendritic cells (DCs) loaded with tumor-associated Ags (TAAs) act as potent adjuvant that initiates antitumor immune responses in vivo. However, TAA-based DC vaccination requires prior identification of TAAs. Apoptotic tumor cells (ATCs) can be an excellent source for DC loading because their potential uncharacterized Ags would be efficiently presented to T cells without any prior characterization and isolation of these Ags. However, ATCs alone are considered to be inefficient for activating antitumor immunity, possibly because of their inability to induce DC maturation. In this study, the aim was to enhance antitumor immune response by taking advantage of ATCs that have been opsonized with IgG (ATC-immune complexes, ATC-ICs) so as to target them to FcR for IgG (FcgammaRs) on DCs. It was found that when compared with ATCs, ATC-ICs were efficiently internalized by DCs via FcgammaRs, and this process induced maturation of DCs, which was more efficient than that of ATCs. Importantly, ATC-IC loading was shown to be more efficient than ATCs alone in its capacity for inducing antitumor immunity in vivo, in terms of cytotoxic T cell induction and tumor rejection. These results show that using ATC-ICs may overcome the limitations and may enhance the immune response of current ATC-based DC vaccination therapy.  相似文献   

11.
Daily treatment of mice with fms-like tyrosine kinase 3 ligand (Flt3L) leads to a significant increase in the number of dendritic cells and induces antitumor immunity. Here, we show that Flt3L and CD40 ligand (CD40L) synergize in the generation of immune responses against two poorly immunogenic tumors, leading to complete tumor rejection in a high proportion of mice. Rechallenge of the Flt3L + CD40L-treated mice with the immunizing tumor resulted in complete inhibition of tumor growth, indicating that these animals had developed long-lasting antitumor immunity. In addition, we demonstrate that endogenous CD40L plays a critical role in antitumor immunity, since blockade of CD40-CD40L interactions in vivo prevents the generation of antitumor immunity in therapeutic and vaccination protocols. Dendritic cells generated in mice treated with Flt3L alone or in combination with CD40L were equally potent in stimulating allogeneic T cells and expressed similar levels of MHC class II, CD80, and CD86. However, mice treated with Flt3L + CD40L had significantly more dendritic cells than mice treated with either of the cytokines alone, suggesting that CD40L promotes the proliferation and/or survival of dendritic cells generated by Flt3L treatment. Dendritic cells generated in this manner are likely to be involved in the priming of antitumor immune responses.  相似文献   

12.
To develop an efficient antitumor immunotherapy, we have examined if dendritic cells (DCs) loaded with soluble antigens by electroporation present more antigens via the MHC (major histocompatibility complex) class I pathway, which mediate a cytotoxic T-cell response. DCs loaded with ovalbumin (OVA) by electroporation presented more MHC class I–restricted determinants compared with DCs pulsed with OVA. When electroporated DCs were pulsed with OVA for additional times, both MHC class I– and II–restricted presentation of OVA were increased compared with each single procedure, including electroporation or simple pulse. Immunization with DCs loaded with OVA by electroporation induced higher cytotoxicity of splenocytes to E.G7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with DCs pulsed with OVA. In the animal study, immunization with DCs loaded with OVA or tumor cell lysates by electroporation induced an effective antitumor immunity against tumor of E.G7 cells or Lewis lung carcinoma cells, respectively. In addition, immunization with DCs loaded with antigen by combination of electroporation and pulse, completely protected mice from tumor formation, and prolonged survival, in both tumor models. These results demonstrated that electroporation would be a useful way to enhance MHC class I–mediated antitumor immunity without functional deterioration, and that the combination of electroporation and pulse could be a simple and efficient antigen-loading method and consequently lead to induction of strong antitumor immunity.Abbreviations DCs dendritic cells - MHC major histocompatibility complex - OVA ovalbumin - TAA tumor-associated antigen - CTL cytotoxic T lymphocyte - LDH lactate dehydrogenase  相似文献   

13.
The adoptive transfer of cancer Ag-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming Ag-specific T cells and reprogramming memory T cells (i.e., a transformation from one type of immunity to another, for example, regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses, and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines.  相似文献   

14.
BACKGROUND: Tumor metastasis and relapse are major obstacles in combating human malignant diseases. Neither radiotherapy alone nor injection of dendritic cells (DCs) can successfully overcome this problem. Radiation induces tumor cell apoptosis and necrosis, resulting in the release of tumor antigen and danger signals, which are favorable for DC capturing antigens and maturation. Hence, the strategy of combined irradiation and DC vaccine may be a novel approach for treating human malignancies and early metastasis. METHODS: To develop an effective combined therapeutic approach, we established a novel concomitant local tumor and liver metastases model through subcutaneous (s.c.) and intravenous (i.v.) injection. We selected the optimal time for DC injection after irradiation and investigated the antitumor effect of combining irradiation with DC intratumoral injection and the related mechanism. RESULTS: Combined treatment with radiotherapy and DC vaccine could induce a potent antitumor immune response, resulting in a significant decrease in the rate of local tumor relapse and the numbers of liver metastases. The related mechanisms for this strong antitumor immunity of this combined therapy might be associated with the production of apoptotic and necrotic tumor antigens and heat shock proteins after irradiation, phagocytosis, migration and maturation of DCs, and induction of more efficient tumor-specific cytotoxic T lymphocyte activity through a cross-presentation pathway. CONCLUSIONS: Co-administration of local irradiation and intratumoral DC injection may be a promising strategy for treating radiosensitive tumors and eliminating metastasis in the clinic.  相似文献   

15.
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.  相似文献   

16.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

17.
The use of fusions between dendritic cells (DCs) and tumor cells as vaccines has been proved very effective in stimulating antitumor immune responses, both in animal studies and in early human clinical trials. Because of the difficulty of purifying the hybrid cells from the fusion, fusion mixtures were used in these studies. Recently, we developed a technique using fluorescent-dye staining and fluorescence-activated cell sorting that enabled the hybrid cells to be instantly purified from the fusion mixture. In the present study, the hybrid cells were purified from a fusion between mouse DCs and B16F0 melanoma tumor cells using the new technique. The purified cells, named instant dendritomas (IDs) were then compared with fusion mixtures in stimulating antitumor immune responses. The results from cytotoxicity assays, interferon-gamma production and in vivo lung tumor metastasis demonstrated that IDs are more effective than fusion mixture in stimulating antitumor immunity. Meanwhile, there was no significant difference in the antitumor immunities activated by IDs from allogenic fusion or IDs from syngenic fusion.  相似文献   

18.
Dendritic cells (DCs) play a key role in innate immune responses, and their interactions with T cells are critical for the induction of adaptive immunity. However, immunodeficiency viruses are efficiently captured by DCs and can be transmitted to and amplified in CD4(+) T cells, with potentially deleterious effects on the induction of immune responses. In DC-T-cell cocultures, contact with CD4(+), not CD8(+), T cells preferentially facilitated virus movement to and release at immature and mature DC-T-cell contact sites. This occurred within 5 min of DC-T-cell contact. While the fusion inhibitor T-1249 did not prevent virus capture by DCs or the release of viruses at the DC-T-cell contact points, it readily blocked virus transfer to and amplification in CD4(+) T cells. Higher doses of T-1249 were needed to block the more robust replication driven by mature DCs. Virus accumulated in DCs within T-1249-treated cocultures but these DCs were actually less infectious than DCs isolated from untreated cocultures. Importantly, T-1249 did not interfere with the stimulation of virus-specific CD4(+) and CD8(+) T-cell responses when present during virus-loading of DCs or for the time of the DC-T-cell coculture. These results provide clues to identifying strategies to prevent DC-driven virus amplification in CD4(+) T cells while maintaining virus-specific immunity, an objective critical in the development of microbicides and therapeutic vaccines.  相似文献   

19.
Dendritic cells (DCs) play a critical role in both initiating immune responses and in maintaining peripheral tolerance. However, the exact mechanism by which DCs instruct/influence the generation of effector vs regulatory T cells is not clear. In this study, we present evidence that TGF-beta, an important immunoregulatory molecule, is present on the surface of ex vivo immature human DCs bound by latency-associated peptide (LAP). Maturation of DCs upon stimulation with LPS results in loss of membrane-bound LAP and up-regulation of HLA class II and costimulatory molecules. The presence of LAP on immature DCs selectively inhibits Th1 cell but not Th17 cell differentiation and is required for differentiation and/or survival of Foxp3-positive regulatory T cells. Taken together, our results indicate that surface expression of TGF-beta on DCs in association with LAP is one of the mechanisms by which immature DCs limit T cell activation and thus prevent autoimmune responses.  相似文献   

20.
BACKGROUND: Although current immunotherapeutic strategies including adenovirus (AdV)-mediated gene therapy and dendritic cell (DC) vaccine can all stimulate antitumor cytotoxic T lymphocyte (CLT) responses, their therapeutic efficiency has still been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or growth inhibition of small tumors in vivo. However, it is the well-established tumors in animal models that mimic clinical patients with existing tumor burdens. Alpha tumor necrosis factor (TNF-alpha) is a multifunctional and immunoregulatory cytokine that induces antitumor activity and activates immune cells such as DCs and T cells. We hypothesized that a combined immunotherapy including gene therapy and DC vaccine would have some advantages over each modality administered as a monotherapy. METHODS: We investigated the antitumor immunotherapeutic efficiency of gene therapy by intratumoral injection of AdVTNF-alpha and DC vaccine using subcutaneous injection of TNF-alpha-gene-engineered DC(TNF-alpha) cells, and further developed a combined AdV-mediated TNF-alpha-gene therapy and TNF-alpha-gene-engineered DC(TNF-alpha) vaccine in combating well-established MO4 tumors expressing the ovalbumin (OVA) gene in an animal model. RESULTS: Our data show that vaccination of DC(TNF-alpha) cells pulsed with the OVA I peptide can (i) stimulate type 1 immune response with enhanced antitumor CTL activities, (ii) induce protective immunity against challenge of 5 x 10(5) MO4 tumor cells, and (iii) reduce growth of the small (3-4 mm in diameter), but not large, established MO4 tumors (6-8 mm in diameter). Our data also show that AdVTNF-alpha-mediated gene therapy can completely eradicate small tumors in 6 out of 8 (75%) mice due to the extensive tumor necrosis formation, but not the large tumors (0%). Interestingly, a combined AdVTNF-alpha-mediated gene therapy and TNF-alpha-gene-engineered DC(TNF-alpha) vaccine is able to cure 3 out of 8 (38%) mice bearing large MO4 tumors, indicating that the combined immunotherapy strategy is much more efficient in combating well-established tumors than monotherapy of either gene therapy or DC vaccine alone. CONCLUSIONS: This novel combined immunotherapy may become a tool of considerable conceptual interest in the implementation of future clinical objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号