首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
To analyse the regulation of the biosynthesis of the secondary metabolite penicillin in Aspergillus nidulans, a strain with an inactivated acvA gene produced by targeted disruption was used. acvA encodes δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS), which catalyses the first step in the penicillin biosynthetic pathway. To study the effect of the inactivated acvA gene on the expression of acvA and the second gene, ipnA, which encodes isopenicillin N synthase (IPNS), A. nidulans strain XEPD, with the acvA disruption, was crossed with strain AXB4A carrying acvA-uidA and ipnA-lacZ fusion genes. Ascospores with the predicted non-penicillin producing phenotype and a hybridization pattern indicating the presence of the disrupted acvA gene, and the fusion genes integrated in single copy at the chromosomal argB locus were identified. Both fusion genes were expressed at the same level as in the non-disrupted strain. Western blot analysis (immunoblotting) revealed that similar amounts of IPNS enzyme were present in both strains from 24 to 68 h of a fermentation run. In the acvA disrupted strain, IPNS and acyl-CoA: 6-aminopenicillanic acid acyltransferase (ACT) specific activities were detected, excluding a sequential induction mechanism of regulation of the penicillin biosynthesis gene ipnA and the third gene aat.  相似文献   

3.
To analyse the regulation of the biosynthesis of the secondary metabolite penicillin in Aspergillus nidulans, a strain with an inactivated acvA gene produced by targeted disruption was used. acvA encodes -(l--aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS), which catalyses the first step in the penicillin biosynthetic pathway. To study the effect of the inactivated acvA gene on the expression of acvA and the second gene, ipnA, which encodes isopenicillin N synthase (IPNS), A. nidulans strain XEPD, with the acvA disruption, was crossed with strain AXB4A carrying acvA-uidA and ipnA-lacZ fusion genes. Ascospores with the predicted non-penicillin producing phenotype and a hybridization pattern indicating the presence of the disrupted acvA gene, and the fusion genes integrated in single copy at the chromosomal argB locus were identified. Both fusion genes were expressed at the same level as in the non-disrupted strain. Western blot analysis (immunoblotting) revealed that similar amounts of IPNS enzyme were present in both strains from 24 to 68 h of a fermentation run. In the acvA disrupted strain, IPNS and acyl-CoA: 6-aminopenicillanic acid acyltransferase (ACT) specific activities were detected, excluding a sequential induction mechanism of regulation of the penicillin biosynthesis gene ipnA and the third gene aat.  相似文献   

4.
5.
Transformation of Aspergillus nidulans has been achieved using a chimeric vector comprising Escherichia coli, Saccharomyces cerevisiae and Aspergillus nidulans DNA. Protoplasts of argB? strains (defective for the ornithine carbamoyl transferase [carbamoylphosphate: l-ornithine carbamoyltransferase, EC 2.1.3.3] gene) of A. nidulans were incubated with plasmid pSal43 containing the cloned argB+ gene in the presence of poly(ethylene glycol) and CaCl2. Transformant progeny was of three types; the majority were small slow-growing colonies which were non-viable when transferred to MM. The remaining large colonies, which were recovered at a frequency of 50 μg?1 DNA in the best experiments, made up the other two types. One group were mitotically stable, showing no evidence of instability; the other comprised unstable types which segregated apparent transformant and parental phenotypes. The apparent transformants showed similar segregational properties. Southern hybridizations with a stable transformant suggested that it arose following integration of the argB+ at the arg locus. Analysis of an unstable transformant suggested that possibly more than one copy of the plasmid was integrated and then subjected to rearrangement.  相似文献   

6.
The lactose operon from Lactobacillus casei is regulated by very tight glucose repression and substrate induction mechanisms, which made it a tempting candidate system for the expression of foreign genes or metabolic engineering. An integrative vector was constructed, allowing stable gene insertion in the chromosomal lactose operon of L. casei. This vector was based on the nonreplicative plasmid pRV300 and contained two DNA fragments corresponding to the 3′ end of lacG and the complete lacF gene. Four unique restriction sites were created, as well as a ribosome binding site that would allow the cloning and expression of new genes between these two fragments. Then, integration of the cloned genes into the lactose operon of L. casei could be achieved via homologous recombination in a process that involved two selection steps, which yielded highly stable food-grade mutants. This procedure has been successfully used for the expression of the E. coli gusA gene and the L. lactis ilvBN genes in L. casei. Following the same expression pattern as that for the lactose genes, β-glucuronidase activity and diacetyl production were repressed by glucose and induced by lactose. This integrative vector represents a useful tool for strain improvement in L. casei that could be applied to engineering fermentation processes or used for expression of genes for clinical and veterinary uses.  相似文献   

7.
8.
9.
Trichoderma reesei is the industrial producer of cellulases and hemicellulases for biorefinery processes. Their expression is obligatorily dependent on the function of the protein methyltransferase LAE1. The Aspergillus nidulans orthologue of LAE1 - LaeA - is part of the VELVET protein complex consisting of LaeA, VeA and VelB that regulates secondary metabolism and sexual as well as asexual reproduction. Here we have therefore investigated the function of VEL1, the T. reesei orthologue of A. nidulans VeA. Deletion of the T. reesei vel1 locus causes a complete and light-independent loss of conidiation, and impairs formation of perithecia. Deletion of vel1 also alters hyphal morphology towards hyperbranching and formation of thicker filaments, and with consequently reduced growth rates. Growth on lactose as a sole carbon source, however, is even more strongly reduced and growth on cellulose as a sole carbon source eliminated. Consistent with these findings, deletion of vel1 completely impaired the expression of cellulases, xylanases and the cellulase regulator XYR1 on lactose as a cellulase inducing carbon source, but also in resting mycelia with sophorose as inducer. Our data show that in T. reesei VEL1 controls sexual and asexual development, and this effect is independent of light. VEL1 is also essential for cellulase gene expression, which is consistent with the assumption that their regulation by LAE1 occurs by the VELVET complex.  相似文献   

10.
11.
12.
《Experimental mycology》1990,14(3):290-293
ThebrlA andabaA genes ofAspergillus nidulans regulate stages of conidiophore development and are themselves regulated during development.brlA mutants produce conidiophore stalks devoid of vesicles, sterigmata, and spores.abaA mutants produce most of the conidiophore structures but fail to form conidia. To assess the spatial expression of these two genes, we fused the 5′ flanking region ofbrlA orabaA to theEscherichia coli lacZ gene.A. nidulans transformants with a single copy of either fusion gene integrated at a defined heterologus locus (argB) expressedβ-galactosidase during conidiophore development, parallelingbrlA andabaA mRNA accumulation. Controls lacking the fusion genes produced little or noβ-galactosidase activity. A method forin situ detection ofβ-galactosidase was devised. Hyphae or conidiophores were permeabilized by treatment with chloroform vapors and stained with 5-bromo-4-chloroindolyl-β-d-galactoside.β-Galactosidase activity was detected in specific conidiophore cell types.brlA- andabaA-directedβ-galactosidase accumulated in vesicles, sterigmata, and immature conidia. This procedure should be applicable for determining cellular specificities of gene expression in fungi for which transformation systems exist.  相似文献   

13.
14.
An argB mutant of Aspergillus oryzae NRRL 492 has been genetically transformed with the Aspergillus nidulans argB gene. Protoplasts were generated with a combination of Novozyme 234 and β-glucuronidase and regenerated on sucrose-stabilized minimal medium without arginine as described for A. nidulans. A frequency of 5 to 10 transformants per μg of DNA was obtained; however, most transformants appeared abortive. The A. nidulans argB gene and vector sequences appeared to be integrated into the A. oryzae chromosome.  相似文献   

15.
A mutation screen in Aspergillus nidulans uncovered mutations in the acdX gene that led to altered repression by acetate, but not by glucose. AcdX of A. nidulans is highly conserved with Spt8p of Saccharomyces cerevisiae, and since Spt8p is a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex, the SAGA complex may have a role in acetate repression in A. nidulans. We used a bioinformatic approach to identify genes encoding most members of the SAGA complex in A. nidulans, and a proteomic analysis to confirm that most protein components identified indeed exist as a complex in A. nidulans. No apparent compositional differences were detected in mycelia cultured in acetate compared to glucose medium. The methods used revealed apparent differences between Yeast and A. nidulans in the deubiquitination (DUB) module of the complex, which in S. cerevisiae consists of Sgf11p, Sus1p, and Ubp8p. Although a convincing homologue of S. cerevisiae Ubp8p was identified in the A. nidulans genome, there were no apparent homologues for Sus1p and Sgf11p. In addition, when the SAGA complex was purified from A. nidulans, members of the DUB module were not co-purified with the complex, indicating that functional homologues of Sus1p and Sgf11p were not part of the complex. Thus, deubiquitination of H2B-Ub in stress conditions is likely to be regulated differently in A. nidulans compared to S. cerevisiae.  相似文献   

16.
We constructed a transposon (transposon assisted gene insertion technology, or TAGIT) that allows the random insertion of gfp (or other genes) into chromosomal loci without disrupting operon structure or regulation. TAGIT is a modified Tn5 transposon that uses KanR to select for insertions on the chromosome or plasmid, β-galactosidase to identify in-frame gene fusions, and Cre recombinase to excise the kan and lacZ genes in vivo. The resulting gfp insertions maintain target gene reading frame (to the 5′ and 3′ of gfp) and are integrated at the native chromosomal locus, thereby maintaining native expression signals. Libraries can be screened to identify GFP insertions that maintain target protein function at native expression levels, allowing more trustworthy localization studies. We here use TAGIT to generate a library of GFP insertions in the Escherichia coli lactose repressor (LacI). We identified fully functional GFP insertions and partially functional insertions that bind DNA but fail to repress the lacZ operon. Several of these latter GFP insertions localize to lacO arrays integrated in the E. coli chromosome without producing the elongated cells frequently observed when functional LacI-GFP fusions are used in chromosome tagging experiments. TAGIT thereby faciliates the isolation of fully functional insertions of fluorescent proteins into target proteins expressed from the native chromosomal locus as well as potentially useful partially functional proteins.  相似文献   

17.
The addition of 0.1 M L-lysine to the fermentation medium reduced the production of penicillin by about 50% in Aspergillus nidulans. To analyse this effect at the molecular level, the expression of the penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, was studied by using translational fusions with different reporter genes (strain AXB4A, acvA-uidA, ipnA-lacZ fusions; AXB4B, acvA-lacZ, ipnA-uidA fusions) integrated in single copy at the chromosomal argB locus of Aspergillus nidulans. Irrespective of the reporter genes used the expression of acvA and ipnA fusion genes was repressed in L-lysine grown cultures. The expression of a fusion gene of an A. nidulans primary metabolism gene (oliC-lacZ) was not affected by L-lysine.  相似文献   

18.
We present a novel technique for gene cloning by complementation of mutations in Aspergillus nidulans with DNA from a heterologous organism, Gaeumannomyces graminis. This technique bypasses the time-consuming and difficult construction of gene libraries, making it both rapid and simple. The method relies on recombination between a fungal replicating vector pHELP1 and linear G. graminis genomic DNA during co-transformation. We were able to complement two out of seven A. nidulans mutants tested and to rescue transforming DNA from both in Escherichia coli. Complementation of the A. nidulans argB mutation resulted from integration of 8–10 kb segments of G. graminis DNA into pHELP1. The complementation of the A. nidulans pyrG mutation resulted from a complex rearrangement. Complementing DNA was shown to originate from G. graminis, and was capable of retransforming the original mutants to give the expected phenotype.  相似文献   

19.
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication (‘helper plasmid’). Transformant colonies appear as the result of the Joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this “instant gene bank” technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号