首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.  相似文献   

2.
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag?/?) or O6-methylguanine methyltransferase (Mgmt?/?), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt?/? neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag?/? neurons were for the most part significantly less sensitive than wild type or Mgmt?/? neurons to MAM and HN2. Aag?/? neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt?/? mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag?/? or MGMT-overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.  相似文献   

3.
Bartonellae are emerging vector-borne pathogens infecting erythrocytes and endothelial cells of various domestic and wild mammals. Blood samples were collected from domestic and wild canids in Iraq under the United States Army zoonotic disease surveillance program. Serology was performed using an indirect immunofluorescent antibody test for B. henselae, B. clarridgeiae, B. vinsonii subsp. berkhoffii and B. bovis. Overall seroprevalence was 47.4% in dogs (n = 97), 40.4% in jackals (n = 57) and 12.8% in red foxes (n = 39). Bartonella species DNA was amplified from whole blood and representative strains were sequenced. DNA of a new Bartonella species similar to but distinct from B. bovis, was amplified from 37.1% of the dogs and 12.3% of the jackals. B. vinsonii subsp. berkhoffii was also amplified from one jackal and no Bartonella DNA was amplified from foxes. Adjusting for age, the odds of dogs being Bartonella PCR positive were 11.94 times higher than for wild canids (95% CI: 4.55–31.35), suggesting their role as reservoir for this new Bartonella species. This study reports on the prevalence of Bartonella species in domestic and wild canids of Iraq and provides the first detection of Bartonella in jackals. We propose Candidatus Bartonella merieuxii for this new Bartonella species. Most of the Bartonella species identified in sick dogs are also pathogenic for humans. Therefore, seroprevalence in Iraqi dog owners and bacteremia in Iraqi people with unexplained fever or culture negative endocarditis requires further investigation as well as in United States military personnel who were stationed in Iraq. Finally, it will also be essential to test any dog brought back from Iraq to the USA for presence of Bartonella bacteremia to prevent any accidental introduction of a new Bartonella species to the New World.  相似文献   

4.
The pepino (or pepino dulce:Solanum muricatum) is a domesticate, of interest because of its close relationship to tomatoes and potatoes, because it is enjoying increasing exposure in the international market, and because it is a cultigen with no known wild ancestor. Morphologically this South American native is a member of the Solanum sect. Basarthrum, and as such, is allied to a number of Andean wild species. Data from other studies are combined with results from restriction site analysis of chloroplast and nuclear ribosomal DNA to assay relationships and the potential origin of the pepino. The pepino may have existed in the wild previously and may be represented today only by the cultigen. However, if its ancestors are extant, three wild species—Solanum basendopogon (Perú),S. caripense (Costa Rica through Perú), S. tabanoense (Colombia and Ecuador)—emerge as most likely progenitors. Phylogenetic analyses of 61 accessions, including 27 of the pepino, dependent on chloroplast DNA (cpDNA) and nuclear ribosomal (rDNA) restriction site data show the pepino to be polymorphic, suggest independent origins for some of the cultivars, and most strongly supportS. tabanoense as the progenitor of the cultigen.Solanum caripense also may have been a direct ancestor of the pepino, or may have hybridized subsequent to its origin with the pepino to yield some of the haplotype variation. Similarly, S.cochoae may have hybridized with the pepino. There are no DNA characters supporting the involvement ofS. basendopogon in the origin.  相似文献   

5.
Superoxide dismutases (SOD) serve as an important antioxidant defense mechanism in aerobic organisms, and deletion of these genes shortens the replicative life span in the budding yeast Saccharomyces cerevisiae. Even though involvement of superoxide dismutase enzymes in ROS scavenging and the aging process has been studied extensively in different organisms, analyses of DNA damages has not been performed for replicatively old superoxide dismutase deficient cells. In this study, we investigated the roles of SOD1, SOD2 and CCS1 genes in preserving genomic integrity in replicatively old yeast cells using the single cell comet assay. We observed that extend of DNA damage was not significantly different among the young cells of wild type, sod1Δ and sod2Δ strains. However, ccs1Δ mutants showed a 60% higher amount of DNA damage in the young stage compared to that of the wild type cells. The aging process increased the DNA damage rates 3-fold in the wild type and more than 5-fold in sod1Δ, sod2Δ, and ccs1Δ mutant cells. Furthermore, ROS levels of these strains showed a similar pattern to their DNA damage contents. Thus, our results confirm that cells accumulate DNA damages during the aging process and reveal that superoxide dismutase enzymes play a substantial role in preserving the genomic integrity in this process.  相似文献   

6.
Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no apparent “gold standard”. Here we present a novel qPCR protocol that meets the conditions of extreme sensitivity and specificity that are required for detection and quantification of tumor DNA. By consecutive application of two polymerases, one of them designed for extreme base-specificity, the method reaches unprecedented sensitivity and specificity. Three qPCR assays were tested with spike-in experiments, specific for point mutations BRAF V600E, PTEN T167A and NRAS Q61L of melanoma cell lines. It was possible to detect down to one copy of tumor DNA per reaction (Poisson distribution), at a background of up to 200 000 wild type DNAs. To prove its clinical applicability, the method was successfully tested on a small cohort of BRAF V600E positive melanoma patients.  相似文献   

7.
Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard’s similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.  相似文献   

8.
Two Agaricus species, A. brunnescens (a commercial mushroom) and A. bitorquis (a wild, edible species), were examined for restriction fragment length polymorphisms. EcoRI-digested nuclear DNA from isolates of both species were cloned in plasmid vector pUC18. Ten random recombinant clones were used in Southern DNA-DNA hybridizations to probe EcoRI-digested DNA from 11 A. brunnescens isolates (7 commercial, 2 wild type, and 2 homokaryotic) and 7 A. bitorquis isolates. Most cloned fragments were polymorphic in both species. There were fewer different genotypes than expected, however, in the sample of commercial A. brunnescens strains. DNA from homokaryotic strains showed fewer bands in most hybridizations than DNA from heterokaryotic strains. All A. bitorquis isolates could be distinguished from each other as well as from every A. brunnescens strain. Putative homokaryons were detected by the loss of polymorphic bands among protoplast regenerates from one commercial strain and two strains collected in the wild.  相似文献   

9.
The DNA ligase activities of wild type and temperature-sensitive lethal cdc 17 mutants of Schizosaccharomyces pombe have been studied by measuring effects on the conversion of relaxed DNA circles containing a single nick to a closed circular form. Such assays have revealed that all cdc 17 mutants have a thermosensitive DNA ligase deficiency, that this deficiency cosegregates 2:2 with their temperature-sensitive cdc-lethality in three tetrads derived from a cross against wild type, and that genetic reversion of the temperature-sensitive cdc? phenotype is accompanied by a restoration of DNA ligase activity; all of which implies that the temperature-sensitive cdc? phenotype of cdc 17 mutants is due to a single nuclear mutation causing a DNA ligase deficiency. Both wild type and mutant enzymes have been partially purified by chromatography in heparin/agarose columns. The wild-type enzyme is completely stable in vitro at both permissive (25 °C) and restrictive (35 °C) temperatures, whereas that of two different mutants, though completely stable at 25 °C, is rapidly inactivated at 35 °C, implying that their mutations are located in the structural gene for DNA ligase.  相似文献   

10.
Alfalfa (Medicago sativa; =M. sativa ssp. sativa) in Lithuania is sown as albuminous forage for cattle due to favourable climatic condition. Over many generations, alfalfa plants have escaped from cultivation fields into natural ecosystems and established wild populations. We collected and analyzed individuals from seventeen wild populations of M. sativa. Using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses, 117 RAPD and 64 ISSR reproducible and highly polymorphic (90.8% for RAPD and 86.3% for ISSR) loci were established. AMOVA showed a high genetic differentiation of M. sativa populations for both types of DNA markers utilized. According to RAPD markers, the genetic variability among populations was 63.1% and 57.0% when ISSR markers were used. Taken together, these results demonstrate that wild populations of M. sativa possess a high potential of genetic variability, that could potentially result in colonization of natural ecosystems. The UPGMA cluster analysis also showed that the DNA markers discovered in this study can distinguish between M. sativa and M. falcata (=M. sativa ssp. falcata) populations and therefore may be used to study the genetic impact of M. sativa on the native populations of M. falcata.  相似文献   

11.
The aim of the present study is to determine the characteristics of genotype and phenotype of Echinococcus granulosus derived from wild sheep and to compare them with the strains of E. granulosus sensu stricto (sheep-dog) and E. granulosus camel strain (camel-dog) in Iran. In Khojir National Park, near Tehran, Iran, a fertile hydatid cyst was recently found in the liver of a dead wild sheep (Ovis orientalis). The number of protoscolices (n=6,000) proved enough for an experimental infection in a dog. The characteristics of large and small hooks of metacestode were statistically determined as the sensu stricto strain but not the camel strain (P=0.5). To determine E. granulosus genotype, 20 adult worms of this type were collected from the infected dog. The second internal transcribed spacer (ITS2) of the nuclear ribosomal DNA (rDNA) and cytochrome c oxidase 1 subunit (COX1) of the mitochondrial DNA were amplified from individual adult worm by PCR. Subsequently, the PCR product was sequenced by Sanger method. The lengths of ITS2 and COX1 sequences were 378 and 857 bp, respectively, for all the sequenced samples. The amplified DNA sequences from both ribosomal and mitochondrial genes were highly similar (99% and 98%, respectively) to that of the ovine strain in the GenBank database. The results of the present study indicate that the morpho-molecular features and characteristics of E. granulosus in the Iranian wild sheep are the same as those of the sheep-dog E. granulosus sensu stricto strain.  相似文献   

12.
Deinococcus radiodurans, one of the most radioresistant organisms known to date is able to reconstruct an intact genome from hundreds of DNA fragments. Here, we investigate the in vivo role of PprA, a radiation-induced Deinococcus specific protein. We report that DNA double strand break repair in cells devoid of PprA and exposed to 3800 Gy γ-irradiation takes place efficiently with a delay of only 1 h as compared to the wild type, whereas massive DNA synthesis begins 90 min after irradiation as in the wild type, a phenotype insufficient to explain the severe radiosensitivity of the ΔpprA mutant. We show that the slow kinetics of reassembly of DNA fragments in a ΔpprA ΔrecA double mutant was the same as that observed in a ΔrecA single mutant demonstrating that PprA does not play a major role in DNA repair through RecA-independent pathways. Using a tagged PprA protein and immunofluorescence microscopy, we show that PprA is recruited onto the nucleoid after γ-irradiation before DNA double strand break repair completion, and then is found as a thread across the septum in dividing cells. Moreover, whereas untreated cells devoid of PprA displayed a wild type morphology, they showed a characteristic cell division abnormality after irradiation not found in other radiosensitive mutants committed to die, as DNA is present equally in the two daughter cells but not separated at the division septum. We propose that PprA may play a crucial role in the control of DNA segregation and/or cell division after DNA double strand break repair.  相似文献   

13.
Wu JR  Yeh YC 《Journal of virology》1975,15(5):1096-1106
Suppressors of gene 59-defective mutants were isolated by screening spontaneous, temperature-sensitive (ts) revertants of the amber mutant, amC5, in gene 59. Six ts revertants were isolated. No gene 59-defective ts recombinant was obtained by crossing each ts revertant with the wild type, T4D. However, suppressors of gene 59-defective mutants were obtained from two of these ts revertants. These suppressor mutants are referred to as dar (DNA arrested restoration). dar mutants specifically restored the abnormalities, both in DNA synthesis and burst size, caused by gene 59-defective mutants to normal levels. It is unlikely that dar mutants are nonsense suppressors since theý failed to suppress amber mutations in 11 other genes investigated. The genetic expression of dar is controlled by gene 55; therefore, dar is a late gene. The genetic location of dar has been mapped between genes 24 and 25, a region contiguous to late genes. dar appears to be another nonessential gene of T4 since burst sizes of dar were almost identical to those of the wild type. Mutations in dar did not affect genetic recombination and repair of UV-damaged DNA, but caused a sensitivity to hydroxyurea in progeny formation. The effect of the dar mutation on host DNA degradation cannot account for its hydroxyurea sensitivity. dar mutant alleles were recessive to the wild-type allele as judged by restoration of arrested DNA synthesis. The possible mechanisms for the suppression of defects in gene 59 are discussed.  相似文献   

14.
In the standard method of transformation of Escherichia coli with extraneous DNA, cells are made competent for DNA uptake by incubating in ice-cold 100?mM CaCl2. Analysis of the whole protein profile of CaCl2-treated E. coli cells by the techniques of one- and two-dimensional gel electrophoresis, MALDI-MS and immunoprecipitation revealed overproduction of outer membrane proteins OmpC, OmpA and heat-shock protein GroEL. In parity, transformation efficiency of E. coli ompC mutant by plasmid pUC19 DNA was found to be about 40?% lower than that of the wild type strain. Moreover, in E. coli cells containing groEL-bearing plasmid, induction of GroEL caused simultaneous overproduction of OmpC. On the other hand, less OmpC was synthesized in E. coli groEL mutant compared to its wild type counterpart, by CaCl2-shock. From these results it can be suggested that in the process of CaCl2-mediated generation of competence, the heat-shock chaperone GroEL has specific role in DNA entry into the cell, possibly through the overproduced OmpC and OmpA porins.  相似文献   

15.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

16.
The essential nucleoid-associated protein HBsu of Bacillus subtilis comprises 92 residues, 20% of which are basic amino acids. To investigate the role of the residues located within the DNA-binding arm, the arginine residues R58 and R61 were changed to leucine, while lysine residues K80 and K86 were replaced by alanine. All altered proteins exhibited a reduction in DNA binding capacity, ranging from 10% to 30% of HBsu wild type DNA-binding ability. To investigate the physiological effect of these mutations in B. subtilis, the indigenous hbs gene was replaced by the mutated genes. B. subtilis strain PK20, which carries the HBsu mutation R58L which exhibits the lowest DNA binding ability in vitro, showed the strongest retardation of growth compared to the wild type. Furthermore, PK20 cells displayed an increased rate of cell lysis, diminished sporulation efficiency and a reduced level of negatively supercoiled DNA. These observations suggest that the DNA binding ability of HBsu DNA is important for growth and differentiation and influences DNA topology.  相似文献   

17.
A strain of Escherichia coli K12 mutant at the dam2 site contains 0.8 mole % 6-methyl adenine as compared to 0.50 mole % in the wild type, and the residual DNA methylation is not due to the K12 modification methylase specified by the hsp genes. The dam-3 mutant is more sensitive to ultraviolet irradiation and to mitomycin C than the wild type and also shows a higher mutability. DNA isolated from the dam-3 mutant contains single-stranded breaks that are amplified in dam-3 polA12 and dam-3 lig-7 double mutants. A function of dam-specified 6-methyl adenine residues in DNA would, therefore, appear to be the protection of DNA from a nuclease(s) that causes the development of breaks. Combination of dam-3 with polA, recA, recB and recC is lethal.  相似文献   

18.
The gene for the mismatch-specific uracil DNA glycosylase (MUG) was identified in the Escherichia coli genome as a sequence homolog of the human thymine DNA glycosylase with activity against mismatched uracil base pairs. Examination of cell extracts led us to detect a previously unknown xanthine DNA glycosylase (XDG) activity in E. coli. DNA glycosylase assays with purified enzymes indicated the novel XDG activity is attributable to MUG. Here, we report a biochemical characterization of xanthine DNA glycosylase activity in MUG. The wild type MUG possesses more robust activity against xanthine than uracil and is active against all xanthine-containing DNA (C/X, T/X, G/X, A/X and single-stranded X). Analysis of potentials of mean force indicates that the double-stranded xanthine base pairs have a relatively narrow energetic difference in base flipping, whereas the tendency for uracil base flipping follows the order of C/U > G/U > T/U > A/U. Site-directed mutagenesis performed on conserved motifs revealed that Asn-140 and Ser-23 are important determinants for XDG activity in E. coli MUG. Molecular modeling and molecular dynamics simulations reveal distinct hydrogen-bonding patterns in the active site of E. coli MUG that account for the specificity differences between E. coli MUG and human thymine DNA glycosylase as well as that between the wild type MUG and the Asn-140 and Ser-23 mutants. This study underscores the role of the favorable binding interactions in modulating the specificity of DNA glycosylases.  相似文献   

19.

Background and Aims

In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested.

Methods

arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes

Key Results

There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl.

Conclusions

Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.  相似文献   

20.
We have developed an integrative transformation system for metabolic engineering of the tetraacetyl phytosphingosine (TAPS)-secreting yeast Pichia ciferrii. The system uses (i) a mutagenized ribosomal protein L41 gene of P. ciferrii as a dominant selection marker that confer resistance to the antibiotic cycloheximide and (ii) a ribosomal DNA (rDNA) fragment of P. ciferrii as a target for multicopy gene integration into the chromosome. A locus within the nontranscribed region located between 5S and 26S rDNAs was selected as the integration site. A maximum frequency of integrative transformation of approximately 1,350 transformants/μg of DNA was observed. To improve the de novo synthesis of sphingolipid, the LCB2 gene, encoding a subunit of serine palmitoyltransferase, which catalyzes the first committed step of sphingolipid synthesis, was cloned from P. ciferrii and overexpressed under the control of the P. ciferrii glyceraldehyde-3-phosphate dehydrogenase promoter. After transformation of an LCB2 gene expression cassette, several transformants that contained approximately five to seven copies of transforming DNA in the chromosome and exhibited about 50-fold increase in LCB2 mRNA relative to the wild type were identified. These transformants were observed to produce approximately two times more TAPS than the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号