首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A new transposable element has been isolated from an unstable niaD mutant of the fungus Fusarium oxysporum. This element, called impala, is 1280 nucleotides long and has inverted repeats of 27 bp. Impala inserts into a TA site and leaves behind a footprint when it excises. The inserted element, impala-160, is cis-active, but is probably trans-defective owing to several stop codons and frameshifts. Similarities exist between the inverted repeats of impala and those of transposons belonging to the widely dispersed mariner and Tc1 families. Moreover, translation of the open reading frame revealed three regions showing high similarities with Tc1 from Caenorhabditis elegans and with the mariner element of Drosophila mauritiana. The overall comparison shows that impala occupies an intermediate position between the mariner and Tcl-like elements, suggesting that all these elements belong to the same superfamily. The degree of relatedness observed between these elements, described in different kingdoms, raises the question of their origin and evolution.  相似文献   

2.
The transposable element impala is a member of the widespread superfamily of Tc1-mariner transposons, identified in the genome of the plant pathogenic fungus Fusarium oxysporum. This element is present in a low copy number and is actively transposed in the F.?oxysporum strain F24 that is pathogenic for melons. The structure of the impala family was investigated by cloning and sequencing all the genomic copies. The analysis revealed that this family is composed of full-length and truncated copies. Four copies contained a long open reading frame that could potentially encode a transposase of 340 amino acids. The presence of conserved functional domains (a nuclear localisation signal, a catalytic DDE domain and a DNA-binding domain) suggests that these four copies may be autonomous elements. Sequence comparisons and phylogenetic analysis of the impala copies defined three subfamilies, which differ by a high level of nucleotide polymorphism (around 20%). The coexistence of these divergent subfamilies in the same genome may indicate that the impala family is of ancient origin and/or that it arose by successive horizontal transmission events.  相似文献   

3.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3′ coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

4.
The transposable element impala is a member of the widespread superfamily of Tc1-mariner transposons, identified in the genome of the plant pathogenic fungus Fusarium oxysporum. This element is present in a low copy number and is actively transposed in the F.␣oxysporum strain F24 that is pathogenic for melons. The structure of the impala family was investigated by cloning and sequencing all the genomic copies. The analysis revealed that this family is composed of full-length and truncated copies. Four copies contained a long open reading frame that could potentially encode a transposase of 340 amino acids. The presence of conserved functional domains (a nuclear localisation signal, a catalytic DDE domain and a DNA-binding domain) suggests that these four copies may be autonomous elements. Sequence comparisons and phylogenetic analysis of the impala copies defined three subfamilies, which differ by a high level of nucleotide polymorphism (around 20%). The coexistence of these divergent subfamilies in the same genome may indicate that the impala family is of ancient origin and/or that it arose by successive horizontal transmission events. Received: 2 December 1997 / Accepted: 28 April 1998  相似文献   

5.
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, andmariner were identified in theC. elegans database by computational analysis. These elements are found throughout theC. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 by to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety ofC. elegans genes. Correspondence to: W. Belknap  相似文献   

6.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

7.
8.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3 coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

9.
We report the cloning and characterisation of Pot2, a putative transposable element from Magnaporthe grisea. The element is 1857 by in size, has 43-bp perfect terminal inverted repeats (TIRs) and 16-bp direct repeats within the TIRs. A large open reading frame, potentially coding for a transposase-like protein, was identified. This putative protein coding region showed extensive identity to that of Fott, a transposable element from another phytopathogenic fungus, Fusarium oxysporum. Pot2, like the transposable elements Tc1 and Mariner of Caenorhabditis elegans and Drosophila, respectively, duplicates the dinucleotide TA at the target insertion site. Sequence analysis of DNA flanking 12 Pot2 elements revealed similarity to the consensus insertion sequence of Tct. Pot2 is present at a copy number of approximately 100 per haploid genome and represents one of the major repetitive DNAs shared by both rice and non-rice pathogens of M. grisea.  相似文献   

10.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

11.
Members of the Tc1/mariner superfamily of transposable elements isolated from vertebrates are transpositionally inactive due to the accumulation of mutations in their transposase genes. A novel open reading frame-trapping method was used to isolate uninterrupted transposase coding regions from the genome of the frog species Rana pipiens. The isolated clones were ~90% identical to a predicted transposase gene sequence from Xenopus laevis, but contained an unpredicted, ~180 bp region encoding the N-terminus of the putative transposase. None of these native genes was found to be active. Therefore, a consensus sequence of the transposase gene was derived. This engineered transposase and the transposon inverted repeats together constitute the components of a novel transposon system that we named Frog Prince (FP). FP has only ~50% sequence similarity to Sleeping Beauty (SB), and catalyzes efficient cut-and-paste transposition in fish, amphibian and mammalian cell lines. We demonstrate high-efficiency gene trapping in human cells using FP transposition. FP is the most efficient DNA-based transposon from vertebrates described to date, and shows ~70% higher activity in zebrafish cells than SB. Frog Prince can greatly extend our possibilities for genetic analyses in vertebrates.  相似文献   

12.
Mobile elements using a “cut and paste” mechanism of transposition (Class II) are frequently prone to internal deletions and the question of the origin of these copies remains elusive. In this study, we looked for copies belonging to the Lemi Family (Tc1-mariner-IS630 SuperFamily) in the plant genomes, and copies within internal deletions were analyzed in detail. Lemi elements are found exclusively in Eudicots, and more than half of the copies have been deleted. All deletions occur between microhomologies (direct repeats from 2 to 13 bp). Copies less than 500 bp long, similar to MITEs, are frequent. These copies seem to result from large deletions occurring between microhomologies present within a region of 300 bp at both extremities of the element. These regions are particularly A/T rich, compared to the internal part of the element, which increases the probability of observing short direct repeats. Most of the molecular mechanisms responsible for double strand break repair are able to induce deletions between microhomologies during the repair process. This could be a quick way to reduce the population of active copies within a genome and, more generally, to reduce the overall activity of the element after it has entered a naive genome.  相似文献   

13.
Mos1 and other mariner/Tc1 transposons move horizontally during evolution, and when transplanted into heterologous species can transpose in organisms ranging from prokaryotes to protozoans and vertebrates. To further develop the Drosophila Mos1 mariner system as a genetic tool and to probe mechanisms affecting the regulation of transposition activity, we developed an in vitro system for Mos1 transposition using purified transposase and selectable Mos1 derivatives. Transposition frequencies of nearly 10–3/target DNA molecule were obtained, and insertions occurred at TA dinucleotides with little other sequence specificity. Mos1 elements containing only the 28 bp terminal inverted repeats were inactive in vitro, while elements containing a few additional internal bases were fully active, establishing the minimal cis-acting requirements for transposition. With increasing transposase the transposition frequency increased to a plateau value, in contrast to the predictions of the protein overexpression inhibition model and to that found recently with a reconstructed Himar1 transposase. This difference between the ‘natural’ Mos1 and ‘reconstructed’ Himar1 transposases suggests an evolutionary path for down-regulation of mariner transposition following its introduction into a naïve population. The establishment of the cis and trans requirements for optimal mariner transposition in vitro provides key data for the creation of vectors for in vitro mutagenesis, and will facilitate the development of in vivo systems for mariner transposition.  相似文献   

14.
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements.  相似文献   

15.
A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10–12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.  相似文献   

16.
Plasmid-based excision assays performed in embryos of two non-drosophilid species using the mariner transposable element from Drosophila mauritiana resulted in empty excision sites identical to those observed after the excision of mariner from D. mauritiana chromosomes. In the presence of the autonomous mariner element Mos1, excision products were recovered from D. melanogaster, D. mauritiana and the blowfly Lucilia cuprina. When a hsp82 heat shock promoter-Mos1 construct was used to supply mariner transposase, excision products were also recovered from the Queensland fruitfly Bactrocera tryoni. Analysis of DNA sequences at empty excision sites led us to hypothesise that the mariner excision/repair process involves the formation of a heteroduplex at the excision breakpoint. The success of these assays suggests that they will provide a valuable tool for assessing the ability of mariner and mariner-like elements to function in non-drosophilid insects and for investigating the basic mechanisms of mariner excision and repair.  相似文献   

17.
Mariner-like elements (MLE) belong to the Tc1/mariner superfamily of class II transposons. We have analyzed the mariner related to the cecropia subfamily, and called mammal mar1, in four mammalian genomes, Bos taurus (Bovidae), Homo sapiens (Primata), Mus musculus (Rodentia), and Ovis aries (Ovidae). Three kinds of MLE sequences were found in all these species: full-length 1.3-kbp elements, shorter elements 80 bp–1.2 kbp, and single inverted terminal repeats (ITRs). All the 1.3-kbp genomic copies sequenced had an open reading frame encoding a transposase interrupted by stop codons or frame shifts. Phylogenetic analysis of the full-length elements suggested at least two distinct populations of mammal mar1 elements in each species. This was confirmed by using a statistical method that allows defining populations. Finally, the evolutionary origin of the mammal mar1 elements and the paradoxes are discussed. Received: 30 March 2000 / Accepted: 25 July 2000  相似文献   

18.
DNA-binding activity and subunit interaction of the mariner transposase   总被引:5,自引:0,他引:5  
Mos1 is a member of the mariner/Tc1 family of transposable elements originally identified in Drosophila mauritiana. It has 28 bp terminal inverted repeats and like other elements of this type it transposes by a cut and paste mechanism, inserts at TA dinucleotides and codes for a transposase. This is the only protein required for transposition in vitro. We have investigated the DNA binding properties of Mos1 transposase and the role of transposase–transposase interactions in transposition. Purified transposase recognises the terminal inverted repeats of Mos1 due to a DNA-binding domain in the N-terminal 120 amino acids. This requires a putative helix–turn–helix motif between residues 88 and 108. Binding is preferentially to the right hand end, which differs at four positions from the repeat at the left end. Cleavage of Mos1 by transposase is also preferentially at the right hand end. Wild-type transposase monomers interact with each other in a yeast two-hybrid assay and we have used this to isolate mutations resulting in reduced interaction. These mutations lie along the length of the protein, indicating that transposase–transposase interactions are not due to a single interaction domain. One such mutation which retains both DNA-binding and catalytic activity has greatly reduced ability to excise Mos1 from plasmid DNA through coordinate cleavage of the two ends and transposition in vitro is lowered to a level 20-fold below that of the wild-type. This suggests that transposase–transposase interaction is required to form a synaptic complex necessary for coordinate cleavage at the ends of Mos1 during transposition. This mutant enzyme allows insertion at dinucleotides other than TA, including sequences with GC base pairs. This is the first example of a mariner/Tc1 transposase with altered target specificity.  相似文献   

19.
Transposable elements of the mariner family are widespread and have been found in the genome of plants, animals and insects. However, most of these elements contain multiple inactivating mutations and so far, only three naturally occurring mariner elements are known to be functional. In a previous study, a mariner‐like element called Hvmar1 was discovered in the genome of the tobacco budworm Heliothis virescens. Further analysis of the Hvmar1 nucleotide sequence revealed the presence of 30‐bp imperfect inverted terminal repeats and an intact open reading frame, which is considered to encode a functional transposase. In the present study, we show that the Hvmar1 element is active using interplasmid transposition assays in Drosophila melanogaster embryos. When injected into Drosophila embryos, the helper plasmid produced a transposase that was able to mediate transposition of the Hvmar1 element from a donor to a target plasmid. The transposition efficiency of Hvmar1 in D. melanogaster is approximately 11‐fold lower than that of the well‐known Mos1 mariner transposon. However, this efficiency is comparable to those observed previously with Mos1 in non‐Drosophila insects. We identified 10 independent interplasmid transposition events, albeit the recovery of these events was rare. In each case the Hvmar1 element transposed in a precise manner, with the characteristic TA dinucleotides being duplicated on insertion. Furthermore, two of the target sites identified have been used previously by Mos1 for insertion. The active transposition of Hvmar1 in D. melanogaster provides a basis for examining the mobility of this element in its natural host as well as a starting point for comparative studies with Mos1 and other functional mariner transposons.  相似文献   

20.
Yoshiyama M  Honda H  Shono T  Kimura K 《Genetica》2000,108(1):81-86
The presence of mariner-like elements in four strains of the housefly, Musca domestica, was surveyed by PCR. Using the inverted terminal repeat (ITR) sequences of the Mos 1element as primers, DNAs were successfully amplified from all strains of the housefly. Southern blot analysis indicated that these amplified DNAs were repetitive sequences in the genome of M. domestica. Sequence analyses of cloned PCR products showed that they were 45% identical to the Mos 1element. These fragments appeared to be nonfunctional, because they contained no intact open reading frame (ORF) capable of encoding transposase. We conclude that these DNAs are degraded mariner-like elements (MLEs) in M. domestica. Because these endogenous MLEs in M. domesticado not encode any functional proteins, they probably would not affect the behavior of mariner-based vectors if such were introduced into this species as transformation vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号