首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The imperfect yeast Candida maltosa has an ill-defined genetic constitution; it is nominally diploid, but probably highly aneuploid, in nature. We report on polymorphisms specifically affecting those chromosomes which bear the cm-ADE1 gene. This gene encodes phosphoribosylaminoimidazole-succinocarboxamide synthetase, an enzyme in the adenine biosynthetic pathway. By electrophoretic karyotype analysis, three differently sized chromosomes were demonstrated to carry cm-ADE; the size (but not the number) of these chromosomes was also found to vary, both between strains and during the mitotic growth of a single strain. Four different alleles of cm-ADE1 have been cloned and sequenced from one prototrophic strain. DNA sequence divergence between these different alleles is as high as 8%, with the greatest divergence being found in the upstream region. Mitotic recombination events that led to changes in the karyotype were followed by using cm-ADE1 DNA as an hybridization probe. A recombination hot-spot in the neighbourhood of the gene appears to be responsible for the instability of the chromosomes on which it resides.  相似文献   

2.
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a “donor” tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.  相似文献   

3.
Non-recombining sex chromosomes are expected to undergo evolutionary decay, ending up genetically degenerated, as has happened in birds and mammals. Why are then sex chromosomes so often homomorphic in cold-blooded vertebrates? One possible explanation is a high rate of turnover events, replacing master sex-determining genes by new ones on other chromosomes. An alternative is that X-Y similarity is maintained by occasional recombination events, occurring in sex-reversed XY females. Based on mitochondrial and nuclear gene sequences, we estimated the divergence times between European tree frogs (Hyla arborea, H. intermedia, and H. molleri) to the upper Miocene, about 5.4–7.1 million years ago. Sibship analyses of microsatellite polymorphisms revealed that all three species have the same pair of sex chromosomes, with complete absence of X-Y recombination in males. Despite this, sequences of sex-linked loci show no divergence between the X and Y chromosomes. In the phylogeny, the X and Y alleles cluster according to species, not in groups of gametologs. We conclude that sex-chromosome homomorphy in these tree frogs does not result from a recent turnover but is maintained over evolutionary timescales by occasional X-Y recombination. Seemingly young sex chromosomes may thus carry old-established sex-determining genes, a result at odds with the view that sex chromosomes necessarily decay until they are replaced. This raises intriguing perspectives regarding the evolutionary dynamics of sexually antagonistic genes and the mechanisms that control X-Y recombination.  相似文献   

4.
Summary Recombinational repair is the means by which DNA double-strand breaks (DSBs) are repaired in yeast. DNA divergence between chromosomes was shown previously to inhibit repair in diploid G1 cells, resulting in chromosome loss at low nonlethal doses of ionizing radiation. Furthermore, 15–20% divergence prevents meiotic recombination between individual pairs of Saccharomyces cerevisiae and S. carlsbergensis chromosomes in an otherwise S. cerevisiae background. Based on analysis of the efficiency of DSB-induced chromosome loss and direct genetic detection of intragenic recombination, we conclude that limited DSB recombinational repair can occur between homoeologous chromosomes. There is no difference in loss between a repair-proficient Pms+ strain and a mismatch repair mutant, pms1. Since DSB recombinational repair is tolerant of diverged DNAs, this type of repair could lead to novel genes and altered chromosomes. The sensitivity to DSB-induced loss of 11 individual yeast artificial chromosomes (YACs) containing mouse or human (chromosome 21 or HeLa) DNA was determined. Recombinational repair between a pair of homologous HeLa YACs appears as efficient as that between homologous yeast chromosomes in that there is no loss at low radiation doses. Single YACs exhibited considerable variation in response, although the response for individual YACs was highly reproducible. Based on the results with the yeast homoeologous chromosomes, we propose that the potential exists for intra- YAC recombinational repair between diverged repeat DNA and that the extent of repair is dependent upon the amount of repeat DNA and the degree of divergence. The sensitivity of YACs containing mammalian DNA to ionizing radiation-induced loss may thus be an indicator of the extent of repeat DNA.  相似文献   

5.
To isolate Saccharomyces cerevisiae mutants defective in recombinational DNA repair, we constructed a strain that contains duplicated ura3 alleles that flank LEU2 and ADE5 genes at the ura3 locus on chromosome V. When a HO endonuclease cleavage site is located within one of the ura3 alleles, Ura+ recombination is increased over 100-fold in wild-type strains following HO induction from the GAL1, 10 promoter. This strain was used to screen for mutants that exhibited reduced levels of HO-induced intrachromosomal recombination without significantly affecting the spontaneous frequency of Ura+ recombination. One of the mutations isolated through this screen was found to affect the essential gene CDC1. This mutation, cdc1-100, completely eliminated HO-induced Ura+ recombination yet maintained both spontaneous preinduced recombination levels and cell viability, cdc1-100 mutants were moderately sensitive to killing by methyl methanesulfonate and gamma irradiation. The effect of the cdc1-100 mutation on recombinational double-strand break repair indicates that a recombinationally silent mechanism other than sister chromatid exchange was responsible for the efficient repair of DNA double-strand breaks.  相似文献   

6.
The yeast, Candida guilliermondii, has been widely studied due to its biotechnological interest as well as its biological control potential. It integrates foreign DNA predominantly via ectopic events, likely through the well-known non-homologous end-joining (NHEJ) pathway involving the Ku70p/Ku80p heterodimer, Lig4p, Nej1p and Lif1p. This phenomenon remains highly deleterious for targeted gene knock-out strategies that require the homologous recombination process. Here, we have constructed a ku70 mutant strain derived from the ATCC 6260 reference strain of C. guilliermondii. Following a series of disruption attempts of various genes (FCY1, ADE2 and TRP5), using several previously described dominant selectable markers (URA5, SAT-1 and HPH # ), we demonstrated that the efficiencies of homologous gene targeting in such a NHEJ-deficient strain was very high compared to the wild type strain. The C. guilliermondii ku70 deficient mutant thus represents a powerful recipient strain to knock-out genes efficiently in this yeast.  相似文献   

7.
The hup gene fragment of cosmid pHU52 was integrated into the genome of chickpea-Rhizobium Rcd301 via site-specific homologous recombination. Two small fragments of genomic DNA of strain Rcd301 itself were provided to flank cloned hup genes to facilitate the integration. The hup insert DNA of cosmid pHU52 was Isolated as an Intact 30.2 kb fragment using EcoRI, and cloned on partially restricted cosmid clone pSPSm3, which carries a DNA fragment of strain Rcd301 imparting streptomycin resistance. One of the recombinant cosmid clones, pBSL 12 thus obtained was conjugally transferred to the strain Rcd301. The integration of hup gene fragment into the genomic DNA through site-specific homologous recombination, was ensured by introducing an incompatible plasmid, pPH1 JI. The integration was confirmed by Southern hybridization. The integrated hup genes were found to express ex plants in two such constructs BSL 12–1 and BSL 12–3.  相似文献   

8.
Sex chromosomes are a pair of specialized chromosomes containing a sex determination region that is suppressed for recombination. Without recombination, Y chromosomes are thought to accumulate repetitive DNA sequences which contribute to their degeneration. A pair of primitive sex chromosomes controls sex type in papaya with male and hermaphrodite determined by the slightly different male-specific region of the Y (MSY) and hermaphrodite-specific region of Yh (HSY) chromosomes, respectively. Here, we show that the papaya HSY and MSY in the absence of recombination have accumulated nearly 12 times the amount of chloroplast-derived DNA than the corresponding region of the X chromosome and 4 times the papaya genome-wide average. Furthermore, a chloroplast genome fragment containing the rsp15 gene has been amplified 23 times in the HSY, evidence of retrotransposon-mediated duplication. Surprisingly, mitochondria-derived sequences are less abundant in the X and HSY compared to the whole genome. Shared organelle integrations are sparse between X and HSY, with only 11 % of chloroplast and 12 % of mitochondria fragments conserved, respectively, suggesting that the accelerated accumulation of organelle DNA occurred after the HSY was suppressed for recombination. Most of the organelle-derived sequences have divergence times of <7 MYA, reinforcing this notion. The accumulated chloroplast DNA is evidence of the slow degeneration of the HSY.  相似文献   

9.
Parallels have been drawn between the evolution of nonrecombining regions in fungal mating‐type chromosomes and animal and plant sex chromosomes, particularly regarding the stages of recombination cessation forming evolutionary strata of allelic divergence. Currently, evidence and explanations for recombination cessation in fungi are sparse, and the presence of evolutionary strata has been examined in a minimal number of fungal taxa. Here, the basidiomycete genus Microbotryum was used to determine the history of recombination cessation for loci on the mating‐type chromosomes. Ancestry of linkage with mating type for 13 loci was assessed across 20 species by a phylogenetic method. No locus was found to exhibit trans‐specific polymorphism for alternate alleles as old as the mating pheromone receptor, indicating that ages of linkage to mating type varied among the loci. The ordering of loci in the ancestry of linkage to mating type does not agree with their previously proposed assignments to evolutionary strata. This study suggests that processes capable of influencing divergence between alternate alleles may act at loci in the nonrecombining regions (e.g., gene conversion) and encourages further work to dissect the evolutionary processes acting upon genomic regions that determine mating compatibility.  相似文献   

10.
Yeast strains isolated from the wild may undergo karyotype changes during vegetative growth, a characteristic that compromises their utility in genetic improvement projects for industrial purposes. Karyotype instability is a dominant trait, segregating among meiotic derivatives as if it depended upon only a few genetic elements. We show that disrupting the RAD52 gene in a hypervariable strain partially stabilizes its karyotype. Specifically, RAD52 disruption eliminated recombination at telomeric and subtelomeric sequences, had no influence on ribosomal DNA rearrangement rates, and reduced to 30% the rate of changes in chromosomal size. Thus, there are at least three mechanisms related to karyotype instability in wild yeast strains, two of them not requiring RAD52-mediated homologous recombination. When utilized for a standard sparkling-wine second fermentation, Δrad52 strains retained the enological properties of the parental strain, specifically its vigorous fermentation capability. These data increase our understanding of the mechanisms of karyotype instability in yeast strains isolated from the wild and illustrate the feasibility and limitations of genetic remediation to increase the suitability of natural strains for industrial processes.  相似文献   

11.
M D Mikus  T D Petes 《Genetics》1982,101(3-4):369-404
We constructed strains of Saccharomyces cerevisiae that contained two different mutant alleles of either the leu2 gene or the ura3 gene. These repeated genes were located on nonhomologous chromosomes; the two ura3- alleles were located on chromosomes V and XII and the two leu2- alleles were located on chromosomes III and XII. Genetic interactions between the two mutant copies of a gene were detected by the generation of either Leu+ or Ura+ revertants. Both spontaneous and ultraviolet irradiation-induced revertants were examined. By genetic and physical analysis, we have shown that Leu+ or Ura+ revertants can arise by a variety of different genetic interactions. The most common type of genetic interaction is the nonreciprocal transfer of information from one repeat to the other. We also detected reciprocal recombination between repeated genes, resulting in reciprocally translocated chromosomes.  相似文献   

12.
Nam K  Ellegren H 《Genetics》2008,180(2):1131-1136
Birds have female heterogamety with Z and W sex chromosomes. These evolved from different autosomal precursor chromosomes than the mammalian X and Y. However, previous work has suggested that the pattern and process of sex chromosome evolution show many similarities across distantly related organisms. Here we show that stepwise restriction of recombination between the protosex chromosomes of birds has resulted in regions of the chicken Z chromosome showing discrete levels of divergence from W homologs (gametologs). The 12 genes analyzed fall into three levels of estimated divergence values, with the most recent divergence (dS = 0.18–0.21) displayed by 6 genes in a region on the Z chromosome corresponding to the interval 1–11 Mb of the assembled genome sequence. Another 4 genes show intermediate divergence (dS = 0.27–0.38) and are located in the interval 16–53 Mb. Two genes (at positions 42 and 50 Mb) with higher dS values are located proximal to the most distal of the 4 genes with intermediate divergence, suggesting an inversion event. The distribution of genes and their divergence indicate at least three evolutionary strata, with estimated times for cessation of recombination between Z and W of 132–150 (stratum 1), 71–99 (stratum 2), and 47–57 (stratum 3) million years ago. An inversion event, or some other form of intrachromosomal rearrangement, subsequent to the formation of strata 1 and 2 has scrambled the gene order to give rise to the nonlinear arrangement of evolutionary strata currently seen on the chicken Z chromosome. These observations suggest that the progressive restriction of recombination is an integral feature of sex chromosome evolution and occurs also in systems of female heterogamety.  相似文献   

13.
Sex chromosomes in plants and animals and fungal mating-type chromosomes often show exceptional genome features, with extensive suppression of homologous recombination and cytological differentiation between members of the diploid chromosome pair. Despite strong interest in the genetics of these chromosomes, their large regions of suppressed recombination often are enriched in transposable elements and therefore can be challenging to assemble. Here we show that the latest improvements of the PacBio sequencing yield assembly of the whole genome of the anther-smut fungus, Microbotryum lychnidis-dioicae (the pathogenic fungus causing anther-smut disease of Silene latifolia), into finished chromosomes or chromosome arms, even for the repeat-rich mating-type chromosomes and centromeres. Suppressed recombination of the mating-type chromosomes is revealed to span nearly 90% of their lengths, with extreme levels of rearrangements, transposable element accumulation, and differentiation between the two mating types. We observed no correlation between allelic divergence and physical position in the nonrecombining regions of the mating-type chromosomes. This may result from gene conversion or from rearrangements of ancient evolutionary strata, i.e., successive steps of suppressed recombination. Centromeres were found to be composed mainly of copia-like transposable elements and to possess specific minisatellite repeats identical between the different chromosomes. We also identified subtelomeric motifs. In addition, extensive signs of degeneration were detected in the nonrecombining regions in the form of transposable element accumulation and of hundreds of gene losses on each mating-type chromosome. Furthermore, our study highlights the potential of the latest breakthrough PacBio chemistry to resolve complex genome architectures.  相似文献   

14.
The occurrence and frequency of outcrossing in homothallic fungal species in nature is an unresolved question. Here we report detection of frequent outcrossing in the homothallic fungus Sclerotinia sclerotiorum. In using multilocus linkage disequilibrium (LD) to infer recombination among microsatellite alleles, high mutation rates confound the estimates of recombination. To distinguish high mutation rates from recombination to infer outcrossing, 8 population samples comprising 268 S. sclerotiorum isolates from widely distributed agricultural fields were genotyped for 12 microsatellite markers, resulting in multiple polymorphic markers on three chromosomes. Each isolate was homokaryotic for the 12 loci. Pairwise LD was estimated using three methods: Fisher''s exact test, index of association (IA) and Hedrick''s D′. For most of the populations, pairwise LD decayed with increasing physical distance between loci in two of the three chromosomes. Therefore, the observed recombination of alleles cannot be simply attributed to mutation alone. Different recombination rates in various DNA regions (recombination hot/cold spots) and different evolutionary histories of the populations could explain the observed differences in rates of LD decay among the chromosomes and among populations. The majority of the isolates exhibited mycelial incompatibility, minimizing the possibility of heterokaryon formation and mitotic recombination. Thus, the observed high intrachromosomal recombination is due to meiotic recombination, suggesting frequent outcrossing in these populations, supporting the view that homothallism favors universal compatibility of gametes instead of traditionally believed haploid selfing in S. sclerotiorum. Frequent outcrossing facilitates emergence and spread of new traits such as fungicide resistance, increasing difficulties in managing Sclerotinia diseases.  相似文献   

15.
The diploid number of chromosomes in primates vary between 2n = 20 in Callicebus torquatus and 2n = 80 in Tarsius bancanus. The largest numbers and also most telo- and acrocentric chromosomes are to be found in the Prosimians. The most highly specialised chromosomes were detected in the Cercocebus-, Macaca- and Papio-species, which possess diploid 42 chromosomes and only reveal meta- and submeta-types.Parameters of the karyotypes significant for evolution are: number and length of the linkage-groups in their influence on genetic recombination and rearrangement, size and position of hetero- and euchromatic segments, positional effects of the chromatins, gene mutations as point mutations, gene multiplications, para- and pericentric inversions, hetero- and euchromatisation, deletions and deficiencies. Examples and models on the elimination and re-creation of organs and functions have been given.The numerous small and large structural alterations of chromosomes observable in humans, which manifest themselves or which can be detected under the microscope but are not manifest, are regarded as being a potential quick-post to further evolutional changes of the human karyotype. Hypothetical derivations of the present karyotype are possible within a few stages via the karyotypes of the chimpanzee and the gorilla. Moreover, the mutational phases are illustrated that would be necessary and conceivable to specialise the present human karyotype to a maximum and reduce the chromosome number from 2n = 46 to 2n = 40. These processes would be linked with the elimination of the very frequently occuring deformities, caused by trisomies, and would thus be of considerable significance.  相似文献   

16.
Adaptation to new environments often occurs in the face of gene flow. Under these conditions, gene flow and recombination can impede adaptation by breaking down linkage disequilibrium between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive alleles are tightly linked in regions of low recombination, potentially favouring divergence and adaptive evolution in these regions over others. Here, we compiled a global genomic data set of over 1,300 individual threespine stickleback from 52 populations and compared the tendency for adaptive alleles to occur in regions of low recombination between populations that diverged with or without gene flow. In support of theory, we found that putatively adaptive alleles (FST and dXY outliers) tend to occur more often in regions of low recombination in populations where divergent selection and gene flow have jointly occurred. This result remained significant when we employed different genomic window sizes, controlled for the effects of mutation rate and gene density, controlled for overall genetic differentiation, varied the genetic map used to estimate recombination and used a continuous (rather than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that our study provides the first statistical evidence that the interaction of gene flow and selection biases divergence toward regions of low recombination.  相似文献   

17.
Yeasts used in the production of lagers contain complex allopolyploid genomes, resulting from the fusion of two different yeast species closely related to Saccharomyces cerevisiae and Saccharomyces bayanus. Recombination between the homoeologous chromosomes has generated a number of hybrid chromosomes. These recombination events provide potential for adaptive evolution through the loss or gain of gene function. We have examined the genotypic and phenotypic effects of one of the conserved recombination events that occurred on chromosome XVI in the region of YPR159W and YPR160W. Our analysis shows that the recombination event occurred within the YPR160W gene, which encodes the enzyme glycogen phosphorylase and generates a hybrid gene that does not produce mature mRNA and is nonfunctional due to frameshifts in the coding region. The loss of function of the hybrid gene leads to glycogen levels similar to those found in haploid yeast strains. The implications for the control of glycogen levels in fermentative yeasts are discussed.Yeasts used in the production of lagers, originally referred to as Saccharomyces carlsbergensis, are now classified as Saccharomyces pastorianus (18). Lager yeasts contain complex polyploid genomes with general tetraploid DNA content and are believed to have arisen from a natural fusion of two different haploid species followed by a genome duplication event or alternatively from the fusion of two diploid yeast species (2, 4, 14, 18). Subsequent genome changes, such as chromosome loss and/or duplication and translocations, have resulted in unequal numbers of chromosomes in the present-day strains, a state referred to as aneuploidy.A sequence analysis of individual genes indicated that the parental strains contributing to the hybrid strain closely resemble Saccharomyces cerevisiae and Saccharomyces bayanus (6, 15, 16). A whole-genome sequence analysis of the lager yeast strain Weihenstephan (15) identified the presence of three types of chromosomes, referred to as (i) S. cerevisiae-like chromosomes, (ii) S. bayanus-like chromosomes, and (iii) hybrids resulting from recombination events between the homoeologous parental chromosomes.Competitive genomic hybridization (CGH) analysis of two S. pastorianus strains, named CMBS-33 and 6701, identified as many as 28 specific locations where recombination between homoeologous pairs of chromosomes or chromosomal translocations may have occurred (3). Of the 28 sites identified, 13 occur at unique sites on eight different chromosomes, while the rest are in subtelomeric X elements or within 25 kbp of the telomere. Many of the genes adjacent to the recombination sites encode proteins that play essential roles in fermentation, including ADH2, ADH4, AAD6 and TDH2 (ethanol metabolism), FLO10, and PHD1 (3).We have recently shown that recombination at these “hot spots” can be induced by the exposure of lager yeasts to environmental stresses such as high temperature and high osmotic stress (13). Furthermore, fermentation under stress conditions leads to the amplification and loss of telomeric regions on a selected set of chromosomes and gene amplification radiating from the rRNA locus on chromosome XII and the DUP locus on chromosome I (13). Since a number of genes, including the MAL (maltose utilization) and the FLO (flocculation) genes, encoding proteins required for the fermentation process reside at the telomeres, such genome dynamics can have important consequences for the immediate quality and outcome of fermentation in addition to severe consequences on strain stability and purity.One of the recombination events identified by CGH analysis is located on chromosome XVI in the region of YPR159W and YPR160W. DNA to the left of the region hybridizes to S. cerevisiae microarrays, while genes between YPR160W and YPR190C and encompassing approximately 58 kb of DNA displayed a lack of hybridization to these microarrays, suggestive of a hybrid chromosome (3). Whole-genome sequence analysis of the Weihenstephan strain confirmed the existence of hybrid chromosome XVI and indicated the presence a second type of chromosome XVI containing S. bayanus-like sequences to the left of YPR159W (15, 16).To examine the genotypic and phenotypic outcomes of this recombination event, the right arm of chromosome XVI has been cloned from the yeast strain CMBS-33. Our analysis reveals that the recombination event occurred within the open reading frame (ORF) of YPR160W (GPH1) encoding the enzyme glycogen phosphorylase, which is required for the mobilization of stored glycogen through its conversion into glucose-1-P. The recombination event generates a hybrid gene that does not produce a mature mRNA and is nonfunctional due to frameshifts in the coding region.  相似文献   

18.
Understanding the process of speciation requires understanding how gene flow influences divergence. Recent analyses indicate that divergence can take place despite gene flow and that the sex chromosomes can exhibit different levels of gene flow than autosomes and mitochondrial DNA. Using an eight marker dataset including autosomal, z-linked, and mitochondrial loci we tested the hypothesis that blue-footed (Sula nebouxii) and Peruvian (S. variegata) boobies diverged from their common ancestor with gene flow, paying specific attention to the differences in gene flow estimates from nuclear and mitochondrial markers. We found no gene flow at mitochondrial markers, but found evidence from the combined autosomal and z-linked dataset that blue-footed and Peruvian boobies experienced asymmetrical gene flow during or after their initial divergence, predominantly from Peruvian boobies into blue-footed boobies. This gene exchange may have occurred either sporadically between periods of allopatry, or regularly throughout the divergence process. Our results add to growing evidence that diverging species can remain distinct but exchange genes.  相似文献   

19.
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.  相似文献   

20.
The recognition of bacterial functions involved in DNA metabolism of bacteriophage T4 might reveal interactions between different enzymes during DNA replication and recombination. To detect such functions we have studied the replication of complete and incomplete T4 chromosomes in various mutant strains of Escherichia coli that are defective in their own DNA metabolism. We found that several E. coli functions can substitute for phage functions in T4 replication and recombination and will discuss here the role of the E. coli pol A gene which codes for DNA polymerase I1–4 and of the dna B and E genes3,5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号