首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A leaf rust resistance gene Lr19 on the chromosome 7DL of wheat derived from Agropyron elongatum was tagged with random amplified polymorphic DNA (RAPD) and microsatellite markers. The F2 population of 340 plants derived from a cross between the leaf rust resistant near-isogenic line (NIL) of Thatcher (Tc + Lr19) and leaf rust susceptible line Agra Local that segregated for dominant monogenic leaf rust resistance was utilized for generating the mapping population. The molecular markers were mapped in the F2 derived F3 homozygous population of 140 seedlings. Sixteen RAPD markers were identified as linked to the alien gene Lr19 among which eight were in a coupling phase linkage. Twelve RAPD markers co-segregated with Lr19 locus. Nine microsatellite markers located on the long arm of chromosome 7D were also mapped as linked to the gene Lr19, including 7 markers which co-segregated with Lr19 locus, thus generating a saturated region carrying 25 molecular markers linked to the gene Lr19 within 10.2 ± 0.062 cM on either side of the locus. Two RAPD markers S265512 and S253737 which flanked the locus Lr19 were converted to sequence characterized amplified region markers SCS265512 and SCS253736, respectively. The marker SCS265512 was linked with Lr19 in a coupling phase and the marker SCS253736 was linked in a repulsion phase, which when used together mimicked one co-dominant marker capable of distinguishing the heterozygous resistant seedlings from the homozygous resistant. The molecular markers were validated on NILs mostly in Thatcher background isogenic for 44 different Lr genes belonging to both native and alien origin. The validation for polymorphism in common leaf rust susceptible cultivars also confirmed the utility of these tightly linked markers to the gene Lr19 in marker-assisted selection.  相似文献   

2.
Near-isogenic lines (NILs) for the leaf rust resistance gene Lr9 were screened for polymorphisms at the molecular level. RAPD (random amplified polymorphic DNA) primers as well as RFLP (restriction fragment length polymorphism) markers were used. Out of 395 RAPD primers tested, three showed polymorphisms between NILs, i.e., an additional band was found in resistant lines. One of these polymorphic bands was cloned and sequenced. Specific primers were synthesized, and after amplification only resistant lines showed an amplified product. Thus, these primers define a sequence-tagged site that is specific for the translocated fragment carrying the Lr9 gene. A cross between a resistant NIL and the spelt (Triticum spelta) variety Oberkulmer was made, and F2 plants were analyzed for genetic linkage. All three polymorphisms detected by the PCR (polymerase chain reaction) and one RFLP marker (cMWG684) showed complete linkage to the Lr9 gene in 156 and 133 plants analyzed, respectively. A second RFLP marker (PSR546) was closely linked (8±2.4 cM) to the Lr9 gene and the other four DNA markers. As this marker maps to the distal part of the long arm of chromosome 6B of wheat, Lr9 and the other DNA markers also map to the distal region of 6BL. All three PCR markers detected the Lr9 gene in independently derived breeding lines and varieties, thus proving their general applicability in wheat breeding programs.  相似文献   

3.
Leaf rust, caused by Puccinia triticina Eriks., is an important foliar disease of common wheat (Triticum aestivum L.) worldwide. Pyramiding several major rust-resistance genes into one adapted cultivar is one strategy for obtaining more durable resistance. Molecular markers linked to these genes are essential tools for gene pyramiding. The rust-resistance gene Lr41 from T. tauschii has been introgressed into chromosome 2D of several wheat cultivars that are currently under commercial production. To discover molecular markers closely linked to Lr41, a set of near-isogenic lines (NILs) of the hard winter wheat cultivar Century were developed through backcrossing. A population of 95 BC3F2:6 NILs were evaluated for leaf rust resistance at both seedling and adult plant stages and analyzed with simple sequence repeat (SSR) markers using bulked segregant analysis. Four markers closely linked to Lr41 were identified on chromosome 2DS; the closest marker, Xbarc124, was about 1 cM from Lr41. Physical mapping using Chinese Spring nullitetrasomic and ditelosomic genetic stocks confirmed that markers linked to Lr41 were on chromosome arm 2DS. Marker analysis in a diverse set of wheat germplasm indicated that primers BARC124, GWM210, and GDM35 amplified polymorphic bands between most resistant and susceptible accessions and can be used for marker-assisted selection in breeding programs.  相似文献   

4.
 A sequence-tagged-site (STS) marker is reported linked to Lr28, a leaf rust resistance gene in wheat. RAPD (random amplified polymorphic DNA) analysis of near-isogenic lines (NILs) of Lr28 in eight varietal backgrounds was carried out using random primers. Genomic DNA enriched for low-copy sequences was used for RAPD analysis to overcome the lack of reproducibility due to the highly repetitive DNA sequences present in wheat. Of 80 random primers tested on the enriched DNA, one RAPD marker distinguished the NILs and the donor parent from the susceptible recurrent parents. The additional band present in resistant lines was cloned, sequenced, and STS primers specific for Lr28 were designed. The STS marker (Indian patent pending: 380 Del98) was further confirmed by bulk segregation analysis of F3 families. It was consistently present in the NILs, the resistant F3 bulk and the resistant F3 lines, but was absent in recurrent parents, the susceptible F3 bulk and the susceptible F3 lines. Received: 20 February 1998 / Accepted: 4 March 1998  相似文献   

5.
The leaf rust resistance gene Lr47 confers resistance to a wide spectrum of leaf rust strains. This gene was recently transferred from chromosome 7S of Triticum speltoides to chromosome 7A of hexaploid wheat Triticum aestivum. To facilitate the transfer of Lr47 to commercial varieties, the completely linked restriction fragment length polymorphism (RFLP) locus Xabc465 was converted into a PCR-based marker. Barley clone ABC465 is orthologous to the type-I wheat sucrose synthase gene and primers were designed for the conserved regions between the two sequences. These conserved primers were used to amplify, clone and sequence different alleles from T. speltoides and T. aestivum. This sequence information was used to identify the T. speltoides sequence, detect allele-specific mutations, and design specific primers. Cosegregation of the PCR product of these primers and the T. speltoides chromosome segment was confirmed in four backcross-populations. To complement this dominant marker, a cleavage amplified polymorphic sequence (CAPS) was developed for the 7A allele of Xabc465. This CAPS marker is useful to select homozygous Lr47 plants from F2 or backcross-F2 segregating populations, and in combination with the T- speltoides specific primers is expected to facilitate the deployment of Lr47 in new bread wheat varieties. Received: 11 October 1999 / Accepted: 30 December 1999  相似文献   

6.
Development of PCR markers for the wheat leaf rust resistance gene Lr47   总被引:3,自引:0,他引:3  
The leaf rust resistance gene Lr47 confers resistance to a wide spectrum of leaf rust strains. This gene was recently transferred from chromosome 7 S of Triticum speltoides to chromosome 7 A of hexaploid wheat Triticum aestivum. To facilitate the transfer of Lr47 to commercial varieties, the completely linked restriction fragment length polymorphism (RFLP) locus Xabc465 was converted into a PCR-based marker. Barley clone ABC465 is orthologous to the type-I wheat sucrose synthase gene and primers were designed for the conserved regions between the two sequences. These conserved primers were used to amplify, clone and sequence different alleles from T. speltoides and T. aestivum. This sequence information was then used to identify the T. speltoides sequence, detect allele-specific mutations, and design specific primers. Cosegregation of the PCR product of these primers and the T. speltoides chromosome segment was confirmed in four backcross-populations. To complement this dominant marker, a cleavage amplified polymorphic sequence (CAPS) was developed for the 7 A allele of Xabc465. This CAPS marker is useful to select homozygous Lr47 plants from F2or backcross-F2 segregating populations, and in combination with the T. speltoides-specific primers is expected to facilitate the deployment of Lr47 in new bread wheat varieties. Received: 7 June 1999 / Accepted: 30 September 1999  相似文献   

7.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

8.
Leaf rust is a widespread and commonly occurring rust disease of wheat. Genetic resistance is the most economical method of reducing losses due to leaf rust. Lr15 has been shown to be present on wheat chromosome 2D and is reported to be a seedling resistance gene. However, tightly linked markers associated with Lr15 have not been reported to date. To identify molecular markers linked to Lr15, an F2 mapping population of Thatcher × Thatcher-Lr15 was generated. Available wheat simple sequence repeat markers were utilized in parental screening and polymorphic markers were used to analyze the entire population of 221 plants. Phenotypic evaluations of the F2-derived F3 progenies with Puccinia triticina Eriks. pathotype 162A (93R15) confirmed the monogenic inheritance of Lr15. The linkage group representing chromosome 2DS was constructed at LOD 4.0 which revealed the closest flanking markers Xgwm4562 and Xgwm102 at a distance of 3.1 and 9.3 cM, respectively. Furthermore, utilization of these flanking markers in combination has successfully identified wheat lines with or without Lr15. These markers could potentially be useful in gene pyramiding with other genes to enhance rust resistance in wheat.  相似文献   

9.
Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat   总被引:1,自引:0,他引:1  
Summary Leaf rust resistance gene Lr34 is present in many wheat cultivars throughout the world that have shown durable resistance to leaf rust. Fourteen pair-wise combinations of Lr34 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests homozygous paired combinations of specific resistance genes with Lr34 had enhanced resistance relative to either parent to different numbers of isolates that were avirulent to the additional resistance genes. The TcLr34, 18 line also expressed enhanced resistance to specific isolates virulent to Lr18 in seedling and adult plant stages. In rust nursery tests, homozygous lines were more resistant than either parent, if the additional leaf rust gene conditioned an effective of resistance when present singly. The ability of Lr34 to interact with other genes conditioning effective resistance may contribute to the durability of leaf rust resistance in cultivars with Lr34. Contribution 1453 Agriculture Canada  相似文献   

10.
The leaf rust resistance gene Lr25, transferred from Secale cereale L. into wheat and located on chromosome 4B, imparts resistance to all pathotypes of leaf rust in South-East Asia. In an F2-derived F3 population, created by crossing TcLr25 that carries the gene Lr25 for leaf rust resistance with leaf rust-susceptible parent Agra Local, three microsatellite markers located on the long arm of chromosome 4B were found to be linked to the Lr25 locus. The donor parent TcLr25 is a near-isogenic line derived from the variety Thatcher. The most virulent pathotype of leaf rust in the South-East Asian region, designated 77–5 (121R63-1), was used for challenging the population under artificially controlled conditions. The marker Xgwm251 behaved as a co-dominant marker placed 3.8 cM away from the Lr25 locus on 4BL. Two null allele markers, Xgwm538 and Xgwm6, in the same linkage group were located at a distance of 3.8 cM and 16.2 cM from the Lr25 locus, respectively. The genetic sequence of Xgwm251, Lr25, Xgwm538, and Xgwm6 covered a total length of 20 cM on 4BL. The markers were validated for their specificity to Lr25 resistance in a set of 43 wheat genetic stocks representing 43 other Lr genes.  相似文献   

11.
The objective of this work was to develop a marker for the adult plant leaf rust resistance gene Lr35. The Lr35 gene was originally introgressed into chromosome 2B from Triticum speltoides, a diploid relative of wheat. A segregating population of 96 F 2 plants derived from a cross between the resistant line ThatcherLr35 and the susceptible variety Frisal was analysed. Out of 80 RFLP probes previously mapped on wheat chromosome 2B, 51 detected a polymorphism between the parents of the cross. Three of them were completely linked with the resistance gene Lr35. The co-segregating probe BCD260 was converted into a PCR-based sequence-tagged-site (STS) marker. A set of 48 different breeding lines derived from several European breeding programs was tested with the STS marker. None of these lines has a donor for Lr35 in its pedigree and all of them reacted negatively with the STS marker. As no leaf rust races virulent on Lr35 have been found in different areas of the world, the STS marker for the Lr35 resistance gene is of great value to support the introgression of this gene in combination with other leaf rust (Lr) genes into breeding material by marker-assisted selection. Received: 14 December 1998 / Accepted: 30 January 1999  相似文献   

12.
We recently showed that the Lr10 wheat leaf rust resistance gene cosegregated with the candidate resistance gene Lrk10 which encodes a putative receptor-like kinase. The aim of this study was to develop Lrk10-derived molecular markers for the detection of the Lr10 gene in breeding material. Different subfragments of Lrk10 were tested as RFLP markers for the Lr10 resistance gene. The most specific fragment (Lrk10-6) was converted into the PCR-based STS marker STSLrk10-6. Both the RFLP and the STS marker did not give a signal with near isogenic lines containing a different Lr gene. The applicability of these markers for the detection of Lr10 in genetically diverse material was tested with 62 wheat and spelt breeding lines, mostly from European breeding programmes. Twelve varieties known to have Lr10 showed the same alleles as the originally characterized line ThatcherLr10. Most of the lines with unknown composition at the Lr10 locus had a null allele with both the RFLP marker Lrk10-6 and the marker STSLrk10-6 whereas 20% of the lines had a different allele. For six lines, including a traditional spelt variety derived from a landrace, both markers showed the same allele as Thatcher Lr10. Artificial infections of these lines with an isolate avirulent on Lr10 resulted in a hypersensitive reaction of all these lines, indicating also the presence of the Lr10 resistance gene. These data demonstrate that the markers derived from sequences of Lrk10 are highly specific for the Lr10 gene in breeding material of very diverse genetic origin. The markers will allow the defined deployment of Lr10 in wheat breeding programmes and will contribute to the elucidation of the role of Lr10 in polygenic resistances against leaf rust.  相似文献   

13.
The leaf rust resistance gene, Lr18, of common wheat cultivars has been derived from Triticum timopheevi and is located on chromosome arm 5BL. Chromosome banding (N-banding) analyses revealed that in the wheat cultivars carrying Lr18 that were examined, which had been bred in 6 different countries, chromosome arm 5BL possessed a specific terminal band not carried by their susceptible parental cultivars. It was suggested that this terminal N-band was introduced from T. timopheevi together with Lr18. N-banding analysis of a T. timopheevi strain showed that one of two timopheevi chromosomes had provided Japanese wheat lines containing Lr18 with the terminal band.  相似文献   

14.
Martínez F  Niks RE  Singh RP  Rubiales D 《Hereditas》2001,135(2-3):111-114
Components of resistance conferred by the Lr46 gene, reported as causing "slow rusting" resistance to leaf rust in wheat, were studied and compared with the effects of Lr34 and genes for quantitative resistance in cv. Akabozu. Lr34 is a gene that confers non-hypersensitive type of resistance. The effect of Lr46 resembles that of Lr34 and other wheats reported with partial resistance. At macroscopic level, Lr46 produced a longer latency period than observed on the susceptible recurrent parent Lalbahadur, and a reduction of the infection frequency not associated with hypersensitivity. Microscopically, Lr46 increased the percentage of early aborted infection units not associated with host cell necrosis and decreased the colony size. The effect of Lr46 is comparable to that of Lr34 in adult plant stage, but in seedling stage its effect is weaker than that of Lr34.  相似文献   

15.
 The Yr15 gene of wheat confers resistance to the stripe rust pathogen Puccinia striiformis West., which is one of the most devastating diseases of wheat throughout the world. In the present study, molecular markers flanking the Yr15 gene of wheat have been identified using the near-isogenic-lines approach. RFLP screening of 76 probe-enzyme combinations revealed one polymorphic marker (Nor/TaqI) between the susceptible and the resistant lines. In addition, out of 340 RAPD primers tested, six produced polymorphic RAPD bands between the susceptible and the resistant lines. The genetic linkage of the polymorphic markers was tested on segregating F2 population (123 plants) derived from crosses between stripe rust-susceptible Triticum durum wheat, cv D447, and a BC3F9 resistant line carrying Yr15 in a D447 background. A 2.8-kb fragment produced by the Nor RFLP probe and a 1420-bp PCR product generated by the RAPD primer OPB13 showed linkage, in coupling, with the Yr15 gene. Employing the standard maximum-likelihood technique it was found that the order OPB13 1420 Yr15Nor1 on chromosome 1B appeared to be no less than 1000-times more probable than the closest alternative. The map distances between OPB13 1420 Yr15Nor1 are 27.1 cM and 11.0 cM for the first and second intervals, respectively. The application of marker-assisted selection for the breeding of new wheat cultivars with the stripe rust resistance gene is discussed. Received: 27 February 1997/Accepted: 7 March 1997  相似文献   

16.
Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat   总被引:2,自引:0,他引:2  
The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F6 RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F4-derived F5 RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.  相似文献   

17.
Leaf rust caused by Puccinia recondita f.sp. tritici is a wheat disease of worldwide importance. Wheat genotypes known to carry specific rust resistance genes and segregating lines that originated from various cross combinations and derived from distinct F2 lineage, so as to represent a diverse genetic background, were included in the present study for validation of molecular markers for Lr19 and Lr24. STS markers detected the presence of the leaf rust resistance gene Lr19 in a Thatcher NIL (Tc*Lrl9) and Inia66//CMH81A575 and of the gene Lr24 in the genotypes Arkan, Blue Boy II, Agent and CI 17907. Validation of molecular markers for Lr19 and Lr24 in parental lines, followed by successful detection of these genes in F3 lines from various cross combinations, was carried out. The molecular test corresponded well with the host-pathogen interaction test response of these lines.  相似文献   

18.
P L Dyck  E R Kerber  T Aung 《Génome》1994,37(4):556-559
'Thatcher' backcross lines RL6058 and RL6077 have adult-plant leaf rust resistance and were believed to have Lr34. However, genetic analysis revealed that the genes in the two lines were independent of each other. Previous work demonstrated that Lr34 is located on chromosome 7D. The leaf rust resistance gene in RL6058 must be on chromosome 7DS because no recombinants were observed between it and gene Lr29, known to be on chromosome 7DS. It was also linked with Rc3 (30.25 +/- 2.88%), a gene for purple coleoptile on chromosome 7DS. It was independent of Lr19 and NS1 (nonsuppressor mutant), which are located on 7DL. The leaf rust resistance gene in RL6077 was independent of genes Lr19 and Lr29. The presence of quadrivalents in pollen mother cells of the RL6058/RL6077 hybrid indicates that the Lr34 gene in RL6077 may have been translocated onto another chromosome. Lr34 from RL6058 and RL6077 may have been combined in four F3 lines derived from their intercross.  相似文献   

19.
Amplified fragment length polymorphism (AFLP) markers were used to enrich the map of the wheat chromosomal region containing the Thinopyrum-derived Lr19 leaf rust resistance gene. The region closest to Lr19 was targeted through the use of deletion and recombinant lines of the translocated segment. One of the AFLP bands thus identified was converted into a sequence-tagged-site (STS) marker. This assay generated a 130-bp PCR fragment in all Lr19-carrying lines tested, except for one deletion mutant, while non-carrier template failed to amplify any product. This sequence represents the first marker to map on the distal side of Lr19 on chromosome 7el1. The conversion process of AFLP fragments to STS markers was technically difficult, mainly because of the presence of contaminating fragments. Various approaches were taken to reduce the frequency of false positives and to identify the correct clone. We were able to formulate a general verification strategy prior to clone sequencing. Various other factors causing problems with converting AFLP bands to an STS assays are also discussed. Received: 15 September 2000 / Accepted: 5 January 2001  相似文献   

20.
Lr19, one of the few widely effective genes conferring resistance to leaf rust in wheat, was transferred from the wild relative Thinopyrum ponticum to durum wheat. Since Lr19 confers a hypersensitive response to the pathogen, it was considered likely that the gene would be a member of the major nucleotide-binding site (NBS)-leucine-rich repeat (LRR) plant R gene family. NBS profiling, based on PCR amplification of conserved NBS motifs, was applied to durum wheat–Th. ponticum recombinant lines involving different segments of the alien 7AgL chromosome arm, carrying or lacking Lr19. Differential PCR products were isolated and sequenced. From one such sequence (AG15), tightly linked to Lr19, a 4,121-bp full-length cDNA was obtained. Its deduced 1,258 amino acid sequence has the characteristic NBS-LRR domains of plant R gene products and includes a coiled-coil (CC) region typical of monocots. The genomic DNA sequence showed the presence of two exons and a short intron upstream of the predicted stop codon. Homology searches revealed considerable identity of AG15 with the cloned wheat resistance gene Pm3a and a lower similarity with wheat Lr1, Lr21, and Lr10. Quantitative PCR on leaf-rust-infected and non-infected Lr19 carriers proved AG15 to be constitutively expressed, as is common for R genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号