首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Tomato plants homozygous for the recessive lateral suppressor (ls) mutation show a number of phenotypic abnormalities among which the lack of lateral meristem initiation during vegetative growth and the absence of petals on the flower are the most prominent. As a first step towards the isolation of the Ls gene by means of map-based cloning, we have determined its position on the restriction fragment length polymorphism (RFLP) map of tomato. RFLP analysis of 527 F2 plants segregating for the ls allele allowed us to define an interval of 0.8 cM in which the Ls gene is located. Analysis of the physical distance between the two flanking RFLP markers by pulsed field gel electrophoresis revealed that they lie no further than 375 kb apart. Knowledge of the physical distance together with the availability of a tomato yeast artificial chromosome (YAC) library, makes it feasible to isolate the Ls gene by a map-based cloning approach.  相似文献   

2.
Pollen development requires both sporophytic and gametophytic gene expression. We are using a map-based cloning technique to isolate sporophytic genes which, when mutant, cause pollen abortion and a male sterile (ms) phenotype in tomato (Lycopersicon esculentum). We have genetically characterized onems locus (ms14) using RFLP analysis and identified flanking markers. High-resolution genomic physical mapping indicates that thems14 locus is located in a ~300 kb region. We have identified a YAC clone with an insert size of ~610 kb that contains thems14-linked markers, reflects the organization of the physical map and therefore most probably contains thems14 gene. In addition, we present evidence that the relationship between physical and genetic distance in this chromosomal region changes abruptly from ~105–140 kb/cM to less than 24 kb/cM, and suggest that the TG393-TG104 region is a hotspot for recombination.  相似文献   

3.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

4.
Iron is one of the most important micronutrients for plants. Like other organisms, plants have developed active mechanisms for the acquisition of sufficient iron from the soil. Nevertheless, very little is known about the genetic mechanisms that control the active uptake. In tomato, two spontaneously derived mutants are available, which are defective in key steps that control this process. The recessive mutationchloronerva (chln) affects a gene which controls the synthesis of the non-protein amino acid nicotianamine (NA), a key component in the iron physiology of plants. The root system of the recessive mutantfer is unable to induce any of the characteristic responses to iron deficiency and iron uptake is thus completely blocked. We present a characterization of the double mutant, showing that thefer gene is epistatic over thechln gene and thus very likely to be one of the major genetic elements controlling iron physiology in tomato. In order to gain access to these two genes at the molecular level, both mutants were precisely mapped onto the high density RFLP map of tomato. Thechln gene is located on chromosome 1 and thefer gene is on chromosome 6 of tomato. Using this high-resolution map, a chromosome walk has been started to isolate thefer gene by map-based cloning. The isolation of thefer gene will provide new insights into the molecular mechanisms of iron uptake control in plants.  相似文献   

5.
As part of a map-based cloning strategy designed to isolate the root-knot nematode resistance gene Mi, tomato F2 populations were analyzed in order to identify recombination points close to this economically important gene. A total of 21?089 F2 progeny plants were screened using morphological markers. An additional 1887 F2 were screened using PCR-based flanking markers. Fine-structure mapping of recombinants with newly developed AFLP markers, and RFLP markers derived from physically mapped cosmid subclones, localized Mi to a genomic region of about 550?kb. The low frequency of recombinants indicated that recombination was generally suppressed in these crosses and that crossovers were restricted to particular regions. To circumvent this problem, a population of Lycopersicon peruvianum, the species from which Mi was originally introgressed, that was segregating for resistance was developed. Screening of this population with PCR, RFLP and AFLP markers identified several plants with crossovers near Mi. Recombination frequency was approximately eight-fold higher in the Mi region of the L. peruvianum cross. However, even within the wild species cross, recombination sites were not uniformly distributed in the region. By combining data from the L.?esculentum and L. peruvianum recombinant analyses, it was possible to localize Mi to a region of the genome spanning less than 65?kb.  相似文献   

6.
The root knot nematode resistance gene Mi in tomato has been mapped in the pericentromeric region of chromosome 6. With the objective of isolating Mi through a map-based cloning approach, we have previously identified and ordered into a high-resolution genetic linkage map a variety of tightly linked molecular markers. Using pulsed-field gelelectrophoresis and various rarely cutting restriction enzymes in single, double and partial digestions, we now report long-range physical maps of the two closest flanking markers, acid phosphatase-1 (Aps-1) and GP79, which span over 400 and 800 kb, respectively. It is concluded that the physical distance between both markers is larger than predicted on the basis of genetic linkage analysis. Furthermore, two RFLP markers (H3F8 and H4H10) which map genetically to the same locus as Aps-1 do not show physical linkage, indicating severe suppression of recombination in this region of the chromosome. Finally, no evidence was obtained showing the presence of a CpG island near Aps-1.  相似文献   

7.
Saturation mapping of a very small genomic region is indispensable for map-based cloning. We applied a method based on sub-cloning and the Southern-hybridization technique for generating RFLP markers directly from yeast artificial chromosomes (YACs). Two YACs overlapping each other and covering the locus of the rice blast resistance gene, Pi-b, were used to construct a plasmid sub-library. Rice-specific and single-copy clones suitable as probes for RFLP analysis were selected from this sub-library by hybridization to the blots of digested DNAs of rice, YACs, and yeast. As a result, 22 markers were produced within a small chromosomal region including Pi-b. This case study shows that overlapping YACs known to cover the gene of interest are very useful in fine-scale physical mapping leading to map-based cloning of the target gene. Received: 2 May 1996 / Accepted: 2 August 1996  相似文献   

8.
In wheat it is essential to know whether a gene is located in a high or low recombination region of the genome before initiating a map-based cloning approach. The objective of this study was to explore the potential feasibility of map-based cloning of the dominant male-sterile gene Ms3 of wheat. High-density physical maps of the short arms of the group-5 chromosomes (5AS, 5BS, and 5DS) of Triticum aestivum L. were constructed by mapping 40 DNA markers on a set of 17 homozygous deletion lines. One hundred RFLP loci were mapped: 35 on 5AS, 37 on 5BS, and 28 on 5DS. A consensus physical map was colinearly aligned with a consensus genetic map of the group-5 short arms. Sixteen of the 17 markers in the consensus genetic map encompass a genetic distance of 25 cM and correspond to the distal region (FL 0.56–0.97) of the consensus physical map. Two rice probes, RG463 and RG901, previously identified to be linked to markers CDO344 and CDO749 (group-5 short arm of wheat), respectively, in the genetic map of rice chromosome 12, map between FL 0.56 and 0.63 in the consensus map. Thus at least a part of the group-5 short arm is homoeologous to a region of chromosome 12 of rice. The genetic map of chromosome arm 5AS was constructed using a population of 139 BC1 plants derived from a cross between the euploid wheat ”Chris” carrying a dominant male-sterile gene Ms3 and a disomic substitution line in which chromosome 5A of T. aestivum cv Chinese Spring was substituted by chromosome 5A from Triticum turgidum ssp. dicoccoides. The map has a genetic length of 53.4 cM with 11 DNA markers. The initial map showed that the gene Ms3 cosegregated with three markers, WG341, BCD1130 and CDO677. High-resolution mapping using an additional 509 BC1 plants indicated that the marker WG341 was closely linked to Ms3 at a genetic distance of 0.8 cM. The Ms3 was mapped physically in the region spanning 40% of the arm length from the centromere of 5AS. Therefore, map-based cloning of the Ms3 is not feasible, although WG341 can be used as a useful tag for the Ms3 gene for breeding purposes. Received: 12 December 2000 / Accepted: 26 January 2001  相似文献   

9.
Application and functional study of dwarf and semi-dwarf genes are of great importance to both crop breeding and molecular biology. A new semi-dwarf gene, sd-t(t), non-allelic to sd-1, had been identified in an indica rice variety, Aitaiyin 2. In this study the gene was genetically mapped by using an F2 population, which consisted of 474 individuals developed from a cross between Aitaiyin 2 and B30. The sd-t(t) gene was located between the RFLP markers R514 and R1408B with a distance of 1.1 cM to R514, and 4.5 cM to R1408B on chromosome 4. A physical contig covering the sd-t(t) mapping region was further constructed by screening a BAC library with R514 and R1408B as probes, and the physical distance between R514 and R1408B was estimated at approximately 147 kb. This result will facilitate map-based cloning of the sd-t(t) gene.  相似文献   

10.
We report the tagging of a powdery mildew [Leveillula taurica (Lév.) Arnaud.] resistance gene (Lv) in tomato using RAPD and RFLP markers. DNA from a resistant (cv Laurica) and a susceptible cultivar were screened with 300 random primers that were used to amplify DNA of resistant and susceptible plants. Four primers yielded fragments that were unique to the resistant line and linked to the resistance gene in an F2 population. One of these amplified fragments, OP248, with a molecular weight of 0.7 kb, was subsequently mapped to chromosome 12, 1 cM away from CT134. Using RFLP markers located on chromosome 12, it was shown that approximately one half of chromosome 12 (about 42 cM), in the resistant variety is comprised of foreign DNA, presumably introgressed with the resistance gene from the wild species L. chilense. Further analysis of a backcross population revealed that the Lv gene lies in the 5.5-cM interval between RFLP markers, CT211 and CT219. As a prelude to map-based cloning of the Lv gene, we are currently enriching the density of markers in this region by a combination of RAPD primers and other techniques.  相似文献   

11.
Summary The dominant gene I 2 confers on tomato (Lycopersicon esculentum) resistance against the fungus Fusarium oxysporum f. sp. lycopersici race 2. A restriction fragment length polymorphism (RFLP) marker, TG105, has recently been found to be tightly linked to I 2. The potential for cloning this gene by a reverse genetics approach prompted us to describe in both genetic and physical detail the region surrounding the I 2 locus on chromosome 11. We have analyzed patterns of segregation of RFLP markers on chromosome 11 and Fusarium resistance in 140 F2 plants from a cross between Fusarium-resistant and susceptible parental lines. Marker TG105 mapped 0.4 centi-Morgan (CM) from I 2. Physical analysis of TG105 and its flanking RFLP markers, TG26 and TG36, by pulsed field gradient gel electrophoresis (PFGE) yielded a restriction map for this region encompassing at least 620 kb of the tomato genome. TG105 and TG26 hybridized to the same 175 kb MluI-NruI restriction fragment. We have therefore linked two genetically distinct RFLP markers. Based on the 4.1 cM distance between them, we have assigned a mean value of 43 kb for each cM recombination distance in the vicinity of I 2. This local ratio between physical and genetic distances is more than 10-fold below the average for the tomato genome. It should therefore be possible to clone I 2 by chromosome walking from TG105.  相似文献   

12.
Abscission zones are specialized regions in plants, usually located at the base of most plant parts, such as flowers, fruit and leaves, where organs are shed. Although a great deal of information is known about the physiological and biochemical events that lead to organ shedding, very little is known of the molecular events that lead to the formation of the abscission zone itself. In tomato, two recessive mutations have been discovered that completely suppress the formation of flower and fruit pedicel abscission zones, i.e., jointless (j) and jointless-2 (j-2), both tentatively localized to chromosome 11 about 30 cM apart. Because the study of the control of abscission zone development is important for both basic and applied research we are using a map-based cloning approach to identify the jointless genes. The first step in any positional cloning experiment is to establish segregating mapping populations for the target gene and identify closely linked molecular markers that flank the locus. In this study, bulked segregant analysis was used to identify a RAPD marker associated with the j-2 locus, RPD140. To determine the chromosome location of RPD140, we converted it to an RFLP marker that was then mapped on the Cornell reference tomato map in a marker-dense region of chromosome 12. To verify that the j-2 locus was located on tomato chromosome 12, we used nine chromosome 12 RFLP markers linked with RPD140 to map the j-2 gene in an interspecific F2 mapping population of 151 plants segregating for j-2. The j-2 gene was localized to a 3.0-cM interval between RPD140 and TG618 on tomato chromosome 12. Received: 29 March 1999 / Accepted: 13 October 1999  相似文献   

13.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

14.
The H1 gene from Solanum tuberosum ssp. andigena confers high levels of resistance to the potato cyst nematode Globodera rostochiensis and is used extensively in potato breeding. Using a dihaploid segregating population, a search was conducted for linkage between this gene and markers on the potato/tomato RFLP map. A total of 60 RFLP markers covering the entire genome were screened on bulk resistant and susceptible segregants. Linkage was indicated for eight markers on chromosome 5. Individual plant analysis placed the closest marker, CD78, at a maximum map distance of 2.7 cM from H1. A molecular marker for the H1 should be useful both as a correlative screening tool for incorporation of resistance into new cultivars and as starting point for map-based cloning of this important gene.  相似文献   

15.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

16.
The tomato (Lycopersicon esculentum) Bs4 gene confers resistance to strains of Xanthomonas campestris pathovar vesicatoria that express the avirulence protein AvrBs4. As part of a map-based cloning strategy for the isolation of Bs4, we converted Bs4-linked amplified fragment length polymorphism (AFLP) and restriction fragment length polymorphism (RFLP) markers into locus-specific sequence-tagged-site (STS) markers. The use of these markers for the analysis of 1972 meiotic events allowed high-resolution genetic mapping within a 1.2-cM interval containing the target gene. Two tomato yeast artificial chromosome (YAC) clones, each harboring inserts of approximately 250 kb, were identified using the marker most closely linked to Bs4. YAC end-specific markers were established and employed to construct a local YAC contig. The ratio of physical to genetic distance at Bs4 was calculated to be 280 kb/cM, revealing that recombination rates in this region are about three times higher than the genome-wide average. Mapping of YAC end-derived markers demonstrated that the Bs4 locus maps within a region of 250 kb, corresponding to a genetic interval of 0.9 cM.  相似文献   

17.
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato,ripening-inhibitor (rin), andnon-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning therin andnor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning therin locus is estimated to be 200–300 kb/cM, while thenor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked torin andnor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains thenot locus.  相似文献   

18.
Identifying useful gene(s) is one of the most important objectives of plant geneticists. Various strategies can be used, which are based on the characteristics of plant reproduction and available technology. Rice is the first model crop whose whole genome sequence has been reported. In addition, information on the whole genome sequences of two important rice subspecies (japonica and indica rice) is also available. Rice is a self-pollinating crop and methods of artificial crossing are relatively easy to perform; such methods enable the production of numerous seeds for genetic analyses. Based on these features, a map-based cloning (i.e., positional cloning) strategy has been successfully applied over the last decade to identify rice genes. Recently, advanced next-generation sequencing (NGS) technology was used to ascertain the genome sequences of individual plants, opening up a new strategy for gene identification. This strategy has been used successfully to identify the genes responsible for certain qualitative traits in rice. However, to identify the gene(s) involved in a quantitative trait, a map-based cloning strategy is still required after quantitative trait loci analysis using NGS technology. In this review, we discuss both map-based cloning (which is still the primary strategy used to identify rice genes) and NGS-based strategies.  相似文献   

19.
The dominant allele Gro1 confers on potato resistance to the root cyst nematode Globodera rostochiensis. The Gro1 locus has been mapped to chromosome VII on the genetic map of potato, using RFLP markers. This makes possible the cloning of Gro1 based on its map position. As part of this strategy we have constructed a high-resolution genetic map of the chromosome segment surrounding Gro1, based on RFLP, RAPD and AFLP markers. RAPD and RFLP markers closely linked to Gro1 were selected by bulked segregant analysis and mapped relative to the Gro1 locus in a segregating population of 1105 plants. Three RFLP and one RAPD marker were found to be inseparable from the Gro1 locus. Two AFLP markers were identified that flanked Gro1 at genetic distances of 0.6 cM and 0.8 cM, respectively. A genetic distance of 1 cM in the Gro1 region corresponds to a physical distance of ca. 100 kb as estimated by long-range restriction analysis. Marker-assisted selection for nematode resistance was accomplished in the course of constructing the high-resolution map. Plants carrying the resistance allele Gro1 could be distinguished from susceptible plants by marker assays based on the polymerase chain reaction (PCR).  相似文献   

20.
The Fr gene in common bean, Phaseolus vulgaris L., is a unique gene for the study of plant nuclear-mitochondrial interactions because it appears to directly influence plant mitochondrial genome structure, resulting in the restoration of pollen fertility in cytoplasmic male sterile plants. This gene action is distinct from other pollen fertility restoration systems characterized to date. As a first step towards the map-based cloning of this unusual nuclear gene, we identified RAPD markers linked to Fr using bulked segregant analysis of near-isogenic lines. Using DNA gel blot hybridization, we localized the identified RAPD markers to a linkage group on the common bean RFLP map and constructed a linkage map of the Fr region using both RAPD markers and RFLP markers. Analysis of the mode of Fr action with the aid of identified Fr-linked DNA markers indicated that Fr functions in a semidominant fashion, showing dosage effect in controlling the dynamics of a heteroplasmic mitochondrial population. We also present our observations on the developmental distinctions, crucial in the accurate mapping of the Fr gene, between spontaneous cytoplasmic reversion and Fr-driven fertility restoration, two phenomena that are phenotypically indistinguishable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号