首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biosynthetic pathway for production of the antibiotic fosfomycin by Streptomyces wedmorensis consists of four steps including the formation of a C-P bond and an epoxide. Fosfomycin production genes were cloned from genomic DNA using S. wedmorensis mutants blocked at different steps of the biosynthetic pathway. Four genes corresponding to each of the biosynthetic steps were found to be clustered in a DNA fragment of about 5 kb. Nucleotide sequencing of a large fragment revealed the presence of ten open reading frames, including the four biosynthetic genes and six genes with unknown functions.  相似文献   

2.
Summary We have isolated and studied the organization ofStreptomyces hygroscopicus genes responsible for the biosynthesis of the antibiotic herbicide bialaphos. Bialaphos production genes were cloned from genomic DNA using a plasmid vector (pIJ702). Three plasmids were isolated which restored productivity toS. hygroscopicus mutants blocked at different steps of the biosynthetic pathway. Subcloning experiments using other nonproducing mutants showed that four additional bialaphos production genes were also contained on these plasmids. A gene conferring resistance to bialaphos, which was independently cloned using the plasmid vector pIJ61, and an antibiotic-sensitive host (S. lividans), was also linked to the production genes. Cosmids were isolated which defined the location of these genes in a 16 kb cluster.  相似文献   

3.
Summary We have cloned the seven genes that are responsible for biosynthesis of the antibiotic fortimicin A (FTM A) using a recently developed self-cloning system that employs the plasmid vector pMO116 for Micromonospora olivasterospora. Five chimeric plasmids that restored FTM A production in M. olivasterospora mutants blocked at different biosynthetic steps were isolated by shotgun cloning. Secondary transformation using other non-producing mutants showed that two additional FTM A biosynthetic genes were included on these plasmids, and that at least four of the genes were clustered. Interestingly AN38-1, a non-producing mutant that had a defect in dehydroxylation of a precursor of FTM A, was complemented by the DNA fragment containing a neomycin resistance gene that had been cloned from a neomycin-producing strain (Micromonospora sp. FTM A non-producing strain) in the course of constructing the plasmid vector pM0116. These results clearly show that this novel gene cloning system in Micromonospora is of practical use.  相似文献   

4.
A eukaryotic mevalonate pathway transferred and expressed in Escherichia coli, and a mammalian hydrocortisone biosynthetic pathway rebuilt in Saccharomyces cerevisiae are examples showing that transferring metabolic pathways from one organism to another can have a powerful impact on cell properties. In this study, we reconstructed the E. coli isoprenoid biosynthetic pathway in S. cerevisiae. Genes encoding the seven enzymatic steps of the pathway were cloned and expressed in S. cerevisiae. mRNA from the seven genes was detected, and the pathway was shown able to sustain growth of yeast in conditions of inhibition of its constitutive isoprenoid biosynthetic pathway.  相似文献   

5.
6.
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.  相似文献   

7.
Plant cell cultures constitute eco‐friendly biotechnological platforms for the production of plant secondary metabolites with pharmacological activities, as well as a suitable system for extending our knowledge of secondary metabolism. Despite the high added value of taxol and the importance of taxanes as anticancer compounds, several aspects of their biosynthesis remain unknown. In this work, a genomewide expression analysis of jasmonate‐elicited Taxus baccata cell cultures by complementary DNA‐amplified fragment length polymorphism (cDNA‐AFLP) indicated a correlation between an extensive elicitor‐induced genetic reprogramming and increased taxane production in the targeted cultures. Subsequent in silico analysis allowed us to identify 15 genes with a jasmonate‐induced differential expression as putative candidates for genes encoding enzymes involved in five unknown steps of taxane biosynthesis. Among them, the TB768 gene showed a strong homology, including a very similar predicted 3D structure, with other genes previously reported to encode acyl‐CoA ligases, thus suggesting a role in the formation of the taxol lateral chain. Functional analysis confirmed that the TB768 gene encodes an acyl‐CoA ligase that localizes to the cytoplasm and is able to convert β‐phenylalanine, as well as coumaric acid, into their respective derivative CoA esters. β‐phenylalanyl‐CoA is attached to baccatin III in one of the last steps of the taxol biosynthetic pathway. The identification of this gene will contribute to the establishment of sustainable taxol production systems through metabolic engineering or synthetic biology approaches.  相似文献   

8.
Three types of media and a multiplex PCR procedure with a set of four primers were used to differentiate between aflatoxinogenic and non-aflatoxinogenic strains of Aspergillus flavus and Aspergillus parasiticus. Four sets of primers were the aflR, nor-1, ver-1, and omt-A genes of the aflatoxin biosynthetic pathway. Multiplex PCR showed that the four aflatoxinogenic strains gave a quadruplet pattern, indicating the presence of all the genes involved in the aflatoxin biosynthetic pathway which encode for the products. Non-aflatoxinogenic strains gave varying results with two, three, or four banding patterns. A banding pattern in seven non-aflatoxinogenic strains resulted in non-differentiation between these and aflatoxinogenic strains.  相似文献   

9.
Several genes in the trichothecene biosynthetic pathway of Fusarium sporotrichioides have been shown to reside in a gene cluster. Sequence analysis of a cloned DNA fragment located 3.8 kb downstream from TRI5 has led to the identification of the TRI11 gene. The nucleotide sequence of TRI11 predicts a polypeptide of 492 residues (Mr = 55,579) with significant similarity to members of the cytochrome P-450 superfamily. TRI11 is most similar to several fungal cytochromes P-450 (23 to 27% identity) but is sufficiently distinct to define a new cytochrome P-450 gene family, designated CYP65A1. Disruption of TRI11 results in an altered trichothecene production phenotype characterized by the accumulation of isotrichodermin, a trichothecene pathway intermediate. The evidence suggests that TRI11 encodes a C-15 hydroxylase involved in trichothecene biosynthesis.  相似文献   

10.
The four overlapping cosmids from the rubradirin producer, Streptomyces achromogenes var rubradiris NRRL 3061, have 58 ORFs within a 105.6 kb fragment. These ORFs harbored essential genes responsible for the formation and attachment of four distinct moieties, along with the genes associated with regulatory, resistance, and transport functions. The PKS (rubA) and glycosyltransferase (rubG2) genes were disrupted in order to demonstrate a complete elimination of rubradirin production. The rubradirin biosynthetic pathway was proposed based on the putative functions of the gene products, the functional identification of sugar genes, and the mutant strains. The GeneBank accession number for the sequence reported in this paper is AJ871581.  相似文献   

11.
Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.  相似文献   

12.
A comparative analysis has been made of the DNA sequences of the isofunctional genes encodingN-acetylglutamate synthase of the arginine biosynthetic pathway of the bacterial speciesPseudomonas aeruginosa andPseudomonas putida. Overall homologies of 81% and 84% at the nucleotide and deduced amino acid sequence levels, respectively, were observed. This high homology was also reflected in the strikingly similar hydropathy profiles of the encoded proteins; patterns of codon usage, including rare codon usage; and amino acid composition of the proteins. This high level of homology at the DNA sequence level is consistent with the location of these genes in the genetically conserved chromosomal region (called auxotrophic-rich region) of the respectivePseudomonas species. Despite chromosomal rearrangements identified in this region the conservation observed at the chromosomal level between thesePseudomonas species is also maintained at the level of the DNA sequence, and in the deduced amino acid sequence, of the genes reported here and of six other pairs of genes of the tryptophan biosynthetic pathway, reported by others, which are also located within this chromosomal region.  相似文献   

13.
The co-ordination of expression of anthocyanin biosynthetic genes was studied in developing flowers. Four genes encoding enzymes operating late in the anthocyanin biosynthetic pathway are induced together during flower development but the early steps appear to be induced more rapidly. Co-ordination of expression could imply a common regulatory mechanism controlling the expression of metabolically related genes. The data presented here show that while four genes may share such a mechanism for the control of their expression during flower development, different control processes regulate the early steps of the pathway. Spatially, gene expression is patterned across the flower and appears to be very similar for all the biosynthetic genes. However, the observed influence of the regulatory gene Delila shows that the spatial co-ordination of gene expression must involve more than one regulatory system. Delila itself appears to have a dual function, being required for activation of expression of the later genes in the flower tube but repressing chalcone synthase gene expression in the mesophyll of the corolla lobes. It is postulated that common signals induce the expression of genes in the pathway during flower development. The data presented here suggest that the same regulatory mechanism interprets these signals for four of the genes encoding the later biosynthetic enzymes, but that different or modified mechanisms interpret the signals to control expression of chalcone synthase and chalcone isomerase genes in Antirrhinum flowers.  相似文献   

14.
d-glucaric acid has been explored for a myriad of potential uses, including biopolymer production and cancer treatment. A biosynthetic route to produce d-glucaric acid from glucose has been constructed in Escherichia coli (Moon et al., 2009b), and analysis of the pathway revealed myo-inositol oxygenase (MIOX) to be the least active enzyme. To increase pathway productivity, we explored protein fusion tags for increased MIOX solubility and directed evolution for increased MIOX activity. An N-terminal SUMO fusion to MIOX resulted in a 75% increase in d-glucaric acid production from myo-inositol. While our directed evolution efforts did not yield an improved MIOX variant, our screen isolated a 941 bp DNA fragment whose expression led to increased myo-inositol transport and a 65% increase in d-glucaric acid production from myo-inositol. Overall, we report the production of up to 4.85 g/L of d-glucaric acid from 10.8 g/L myo-inositol in recombinant E. coli.  相似文献   

15.
16.
The ergot alkaloids are a family of indole-derived mycotoxins with a variety of significant biological activities. Aspergillus fumigatus, a common airborne fungus and opportunistic human pathogen, and several fungi in the relatively distant taxon Clavicipitaceae (clavicipitaceous fungi) produce different sets of ergot alkaloids. The ergot alkaloids of these divergent fungi share a four-member ergoline ring but differ in the number, type, and position of the side chains. Several genes required for ergot alkaloid production are known in the clavicipitaceous fungi, and these genes are clustered in the genome of the ergot fungus Claviceps purpurea. We investigated whether the ergot alkaloids of A. fumigatus have a common biosynthetic and genetic origin with those of the clavicipitaceous fungi. A homolog of dmaW, the gene controlling the determinant step in the ergot alkaloid pathway of clavicipitaceous fungi, was identified in the A. fumigatus genome. Knockout of dmaW eliminated all known ergot alkaloids from A. fumigatus, and complementation of the mutation restored ergot alkaloid production. Clustered with dmaW in the A. fumigatus genome are sequences corresponding to five genes previously proposed to encode steps in the ergot alkaloid pathway of C. purpurea, as well as additional sequences whose deduced protein products are consistent with their involvement in the ergot alkaloid pathway. The corresponding genes have similarities in their nucleotide sequences, but the orientations and positions within the cluster of several of these genes differ. The data indicate that the ergot alkaloid biosynthetic capabilities in A. fumigatus and the clavicipitaceous fungi had a common origin.  相似文献   

17.
Homologs of aflatoxin biosynthetic genes have been identified in the pine needle pathogen Dothistroma pini. D. pini produces dothistromin, a difuranoanthraquinone toxin with structural similarity to the aflatoxin precursor versicolorin B. Previous studies with purified dothistromin suggest a possible role for this toxin in pathogenicity. By using an aflatoxin gene as a hybridization probe, a genomic D. pini clone was identified that contained four dot genes with similarity to genes in aflatoxin and sterigmatocystin gene clusters with predicted activities of a ketoreductase (dotA), oxidase (dotB), major facilitator superfamily transporter (dotC), and thioesterase (dotD). A D. pini dotA mutant was made by targeted gene replacement and shown to be severely impaired in dothistromin production, confirming that dotA is involved in dothistromin biosynthesis. Accumulation of versicolorin A (a precursor of aflatoxin) by the dotA mutant confirms that the dotA gene product is involved in an aflatoxin-like biosynthetic pathway. Since toxin genes have been found to be clustered in fungi in every case analyzed so far, it is speculated that the four dot genes may comprise part of a dothistromin biosynthetic gene cluster. A fifth gene, ddhA, is not a homolog of aflatoxin genes and could be at one end of the dothistromin cluster. These genes will allow comparative biochemical and genetic studies of the aflatoxin and dothistromin biosynthetic pathways and may also lead to new ways to control Dothistroma needle blight.  相似文献   

18.
Cytochrome P450 oxygenases of Taxol biosynthesis   总被引:3,自引:0,他引:3  
  相似文献   

19.
Until recently, only three species (Aspergillus flavus, A. parasiticus and A. nomius) have been widely recognized as producers of aflatoxin. In this study we examine aflatoxin production by two other species, A. tamarii and A. ochraceoroseus, the latter of which also produces sterigmatocystin. Toxin-producing strains of A. tamarii and A. ochraceoroseus were examined morphologically, and toxin production was assayed on different media at different pH levels using thin layer chromatography and a densitometer. Genomic DNA of these two species was probed with known aflatoxin and sterigmatocystin biosynthesis genes from A. flavus, A. parasiticus and A. nidulans. Under the high stringency conditions, A. tamarii DNA hybridized to all four of the A. flavus and A. parasiticus gene probes, indicating strong similarities in the biosynthetic pathway genes of these three species. The A. ochraceoroseus DNA hybridized weakly to the A. flavus and A. parasiticus verB gene probe, and to two of the three A. nidulans probes. These data indicate that, at the DNA level, the aflatoxin and sterigmatocystin biosynthetic pathway genes for A. ochraceoroseus are somewhat different from known pathway genes. Received: 21 May 1999 / Received revision: 17 November 1999 / Accepted: 3 December 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号