首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Looptail (Lp) is a mutation that profoundly affects neurulation in mouse and is characterized by craniorachischisis, an open neural tube extending from the midbrain to the tail in embryos homozygous for the mutation. Lp maps to the distal portion of mouse chromosome 1, and as part of a positional cloning approach, we have generated a high-resolution linkage map of the Lp chromosomal region. For this, we have carried out extensive segregation analysis in a total of 706 backcross mice informative for Lp and derived from two crosses, (Lp/ + X SJL/J)F1 X SJL/J and (Lp/ + X SWR/J)F1 X SWR/J. In addition, 269 mice from a (Mus spretus X C57BL/6J)F1 X C57BL/6J interspecific backcross were also used to order marker loci and calculate intergene distances for this region. With these mice, a total of 28 DNA markers corresponding to either cloned genes or anonymous markers of the SSLP or SSCP-types were mapped within a 5-cM interval overlapping the Lp region, with the following locus order and interlocus distances (in cM): centromere-D1Mit110 / Atp1β1 / Cd3ζ / Cd3η / D1Mit145 — D1Hun14 / D1Mit15 — D1Mit111 / D1Mit112 — D1Mit114 — D1Mit148 / D1Mit205/ D1Mit36 / D1Mit146 / D1Mit147 / D1Mit270 / D1Hun13 — Fcgr2 — Mpp — Apoa2/Fcer1γ - Lp - D1Mit149 / Spna1/Fcer1α-Eph1-Hlx1/D1Mit62. These studies have allowed the delineation of a maximum genetic interval for Lp of 0.5 cM, a size amenable to physical mapping techniques.  相似文献   

2.
3.
4.
Loop-tail (Lp) is a semidominant mutation that affects neurulation in mice. Heterozygous animals are characterized by a looped-tail appearance (pig tail) and wobbly head movements while homozygous embryos exhibit a neural tube closure defect that extends from the caudal midbrain to the tip of the tail. The Lp gene has been finely mapped to the distal part of chromosome 1, and a positional cloning strategy has been initiated to isolate the defective gene. This study represents the characterization of a new Lp allele (Lpm1Jus) induced by N-ethyl-N-nitrosurea mutagenesis. Lpm1Jus/+ mice have a looped-tail appearance, and both Lpm1Jus/Lpm1Jus homozygotes and Lp/Lpm1Jus compound heterozygotes fail to initiate neural tube closure along most of the embryonic axis. These data indicate that the Lpm1Jus allele causes a neural tube defect and overall phenotype similar to that of the original Lp allele. Segregation analysis of 90 (Lpm1Jus/+ × C57BL/6J)F1 × C57BL/6J looped-tail mice with seven markers that define the Lp genetic map (D1Mit455/D1Mit146/D1Mit148/D1Mit270–1 cM–D1Mit113–0.4 cM–Lp–0.2 cM–D1Mit149–0.8 cM–D1Mit115) showed significant linkage between Lpm1Jus and all loci analyzed (P < 0.0001). Eight crossovers were detected with the proximal cluster of D1Mit455, D1Mit146, D1Mit148, and D1Mit270, indicating a recombination rate higher than expected in this region, and a single recombinant was encountered with the distal markers D1Mit149 and D1Mit115. Based on these phenotypic and genetic data, Lpm1Jus is most likely allelic to Lp, thereby representing a valuable additional tool for the positional cloning of the Lp gene and its subsequent molecular characterization.  相似文献   

5.
An interspecific backross was used to define a high resolution linkage map of mouse Chromosome (Chr) 1 and to analyze the segregation of the generalized lymphoproliferative disease (gld) mutation. Mice homozygous for gld have multiple features of autoimmune disease. Analysis of up to 428 progeny from the backcross [(C3H/HeJ-gld x Mus spretus)F1 x C3H/HeJ-gld] established a map that spans 77.6 cM and includes 56 markers distributed over 34 ordered genetic loci. The gld mutation was mapped to a less than 1 cM segment on distal mouse Chr 1 using 357 gld phenotype-positive backcross mice. A second backcross, between the laboratory strains C57BL/6J and SWR/J, was examined to compare recombination frequency between selected markers on mouse Chr 1. Significant differences in crossover frequency were demonstrated between the interspecific backcross and the inbred laboratory cross for the entire interval studied. Sex difference in meiotic crossover frequency was also significant in the laboratory mouse cross. Two linkage groups known to be conserved between segments of mouse Chr 1 and the long arm of human Chrs 1 and 2 where further defined and a new conserved linkage group was identified that includes markers of distal mouse Chr 1 and human Chr 1, bands q32 to q42.  相似文献   

6.
A single recessive gene, ter (teratoma), causes germ cell deficiency and a high incidence of congenital testicular teratomas in the 129/Sv-ter strain of the mouse. Linkage analyses between the ter gene and 36 marker genes of 19 chromosomes were performed with matings between the C57BL/6J-ter congenic strain and four inbred strains. Results showed that the ter gene was linked to D18Mit9, D18Mit14, and D18Mit17 on Chromosome (Chr) 18. Gene order estimated on the basis of recombination distance (in centimorgans) was [centromere-D18Mit14-5.1 (cM)-ter-0 (cM)-D18Mit17-23.8 (cM)-D18Mit9]. D18Mit17 is the microsatellite DNA of the Grl-1 (glucocorticoid receptor-1) locus. We conclude that the ter gene is closely linked to Grl-1 on Chr 18 and is a new mutation involving the developmental modification of primordial germ cells in mice.Deceased  相似文献   

7.
The spontaneous development of juvenile-onset, ovarian granulosa cell (GC) tumors in the SWR/Bm (SWR) inbred mouse strain is a model for juvenile-type GC tumors that appear in infants and young girls. GC tumor susceptibility is supported by multiple Granulosa cell tumor (Gct) loci, but the Gct1 locus on Chr 4 derived from SWR strain background is fundamental for GC tumor development and uniquely responsive to the androgenic precursor dehydroepiandrosterone (DHEA). To resolve the location of Gct1 independently from other susceptibility loci, Gct1 was isolated in a congenic strain that replaces the distal segment of Chr 4 in SWR mice with a 47 × 106-bp genomic segment from the Castaneus/Ei (CAST) strain. SWR females homozygous for the CAST donor segment were confirmed to be resistant to DHEA- and testosterone-induced GC tumorigenesis, indicating successful exchange of CAST alleles (Gct1 CA ) for SWR alleles (Gct1 SW ) at this tumor susceptibility locus. A series of nested, overlapping, congenic sublines was created to fine-map Gct1 based on GC tumor susceptibility under the influence of pubertal DHEA treatment. Twelve informative lines have resolved the Gct1 locus to a 1.31 × 106-bp interval on mouse Chr 4, a region orthologous to human Chr 1p36.22.  相似文献   

8.
Although the phenomenon of innate resistance to flaviviruses in mice was recognized many years ago, it was only recently that the genetic locus (Flv) controlling this resistance was mapped to mouse Chromosome (Chr) 5. Here we report the fine mapping of the Flv locus, using 12 microsatellite markers which have recently been developed for mouse Chr 5. The new markers were genotyped in 325 backcross mice of both (C3H/HeJxC3H/ RV)F1xC3H/HeJ and (BALB/cxC3H/RV)F1xBALB/c backgrounds, relative to Flv. The composite genetic map that has been constructed identifies three novel microsatellite loci, D5Mit68, D5Mit159, and D5Mit242, tightly linked to the Flv locus. One of those loci, D5Mit159, showed no recombinations with Flv in any of the backcross mice analyzed, indicating tight linkage (<0.3 cM). The other two, D5Mit68 and D5Mit242, exhibited two and one recombinations with Flv (0.6 and 0.3 cM) respectively, defining the proximal and distal boundaries of a 0.9-cM segment around this locus. The proximal flanking marker, D5Mit68, maps to a segment on mouse Chr 5 homologous to human Chr 4. This, together with the previous data produced by our group, locates Flv to a region on mouse Chr 5 carrying segments that are conserved on either human Chr 4, 12, or 7, but present knowledge does not allow precise identification of the syntenic element.  相似文献   

9.
The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function.  相似文献   

10.
The planar cell polarity (PCP) pathway organizes the cytoskeleton and polarizes cells within embryonic tissue. We investigate the relationship between PCP signaling and cell fate determination during asymmetric division of neural progenitors (NPs) in mouse embryos. The cortex of Lp/Lp (Loop-tail) mice deficient in the essential PCP mediator Vangl2, homologue of Drosophila melanogaster Strabismus (Stbm), revealed precocious differentiation of neural progenitors into early-born neurons at the expense of late-born neurons and glia. Although Lp/Lp NPs were easily maintained in vitro, they showed premature differentiation and loss of asymmetric distribution of Leu-Gly-Asn–enriched protein (LGN)/partner of inscuteable (Pins), a regulator of mitotic spindle orientation. Furthermore, we observed a decreased frequency in asymmetric distribution of the LGN target nuclear mitotic apparatus protein (NuMa) in Lp/Lp cortical progenitors in vivo. This was accompanied by an increase in the number of vertical cleavage planes typically associated with equal daughter cell identities. These findings suggest that Stbm/Vangl2 functions to maintain cortical progenitors and regulates mitotic spindle orientation during asymmetric divisions in the vertebrate brain.  相似文献   

11.
The whirler (wi) mutation on mouse Chromosome (Chr) 4 results in an autosomal recessive neuroepithelial deafness and vestibular dysfunction exhibited as a characteristic shaker-waltzer behavior (deafness, circling, and head-bobbing). We have constructed a genetic linkage map across the wi region in both an interspecific [(wi/wi× CAST/Ei)F1×wi/wi] backcross (n = 817) and an intraspecific [(wi/wi× CBA/Ca)F1×wi/wi)] backcross (n = 335). In the interspecific backcross, wi was found to be non-recombinant with Orm1, 0.12 cM distal of D4Mit87 and Ambp, and 0.12 cM proximal of CD301. In the intraspecific backcross, wi was found to be non-recombinant with Orm1 and D4Mit244, 0.3 cM distal of Mup1, and 0.6 cM proximal of Tnc. We also report a family from the interspecific backcross that shows evidence of multiple recombinations across the region of mouse Chr 4 around the wi locus. These rearrangements appear specific to both the region and the family. Received: 10 July 1998 / Accepted: 19 January 1999  相似文献   

12.
Legionella pneumophila is a strict intracellular pathogen that replicates in the professional phagocytes of the human and guinea pig host. Although murine macrophages from most inbred strains are non-permissive to intracellular replication of L. pneumophila, inflammatory macrophages from the mouse strain A/J are completely permissive to intracellular replication of this bacterium. This genetic difference is controlled by the expression of a single autosomal gene designated Lgn1, with non-permissiveness behaving as completely dominant over permissiveness. We have used a total of 25 AXB/BXA recombinant inbred mouse strains and 182 (A/JxC57BL/6J)xA/J segregating backcross progeny (A/J, permissive; C57BL/6J, non-permissive) to map the Lgn1 gene. Animals were individually type for tolerance to intracellular replication by in vitro infection of their inflammatory macrophages with L. pneumophila. All animals segregated into two non-overlapping groups. Examination of the strain distribution pattern of the AXB/BXA strains for Lgn1 initially identified linkage to Chromosome (Chr) 13 markers. Genotyping of the 25 AXB/BXA strains and the 182 backcross progeny for 11 Chr 13 markers established that Lgn1 mapped to Chr 13, with the gene order and intergene distance D13Mit231-(5.5±1.5)-D13Mit193-(2.2±0.9)-D13Mit194-(1.1±0.6)-D13Mit128-(2.6±1.0)-Lgn1-(2.2±0.9)-D13Mit70-(3.9±1.3)-D13Mit73-(7.2±1.7)-D13Mit53-(0.7±0.5)-D13Mit32-(0.7±0.5)-D13Mit77-(0.7±0.5)-D13Mit78. This portion of Chr 13 is homologous to the distal portion of human Chr 5, 5q11–5q13, suggesting a possible location of a human LGN1 homolog. Understanding the molecular basis of the high permissiveness of A/J macrophage to L. pneumophila may shed light on the survival strategy of this bacterium in highly permissive human phagocytes. This may be achieved by positional cloning of Lgn1, and the identification of the Lgn1 subchromosomal region reported here is a first step towards that goal.  相似文献   

13.
Mitochondrial β-oxidation of long-chain fatty acids (LCFA) is essential for mammalian life. Because portions of this metabolic pathway are composed of enzymes that are coordinately regulated and share structural and functional similarities, we evaluated five of these enzyme genes for possible chromosomal linkages. Regulation of LCFA catabolism influences cell signal pathways and apoptosis, as well as energy production from LCFA. Partial cDNA fragments of the mouse mitochondrial proteins carnitine acetyltransferase (Crat), very-long-chain acyl coenzyme A dehydrogenase (Acadvl), the liver and muscle isoforms of carnitine acyltransferase I (Cpt1a and Cpt1b respectively), and a genomic PCR product of mitochondrial protein carnitine acyltransferase II (Cpt2) were used in a previously established mapping panel to determine their chromosomal locations. No pseudogenes were detected for any of the genes in Mus musculus, and all of the genes mapped to different chromosome locations, including the tissue-specific isoforms of carnitine palmitoyltransferase. Crat mapped to Chromosome (Chr) 2, at a position approximately 18 cM from the centromere and 2 cM proximal to the gene Ass1. Acadvl mapped to the middle of Chr 11, 8.3 cM distal to Il4 and 2.8 cM proximal to Mpmv2. Cpt1a mapped to the centromeric region of Chr 19, 8.7 cM proximal to Pomc-ps1. Cpt1b mapped to Chr 15, 4.9 distal to Gpt1 and 3.5 cM proximal to Wnt1. Cpt2 mapped to Chr 4 near the locus Pmv19. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

14.
A new esterase locus (Es-13) has been identified in Mus musculus. Strains AEJ/GnRk, LG/J, SJL/J, and SWR/J carry a recessive allele, Es-13 b, for a locus possibly involved in the posttranslational modification of a kidney esterase. All other strains observed carried the dominant Es-13 a allele. Es-13 was mapped on Chr 9 by recombinant inbred lines and by conventional backcrossing experiments. Backcross data produced the following gene order and map distances: Lap-1 (31.6±7.5 cM) Es-13 (2.6±2.6 cM) Mod-1.  相似文献   

15.
16.
《Life sciences》1995,56(18):PL369-PL375
Opiate receptors are the primary targets for the drugs of abuse morphine and heroin. In this study, we completed the localization on mouse chromosomes of the genes encoding mu (Oprm) and kappa (Oprk) receptors, as well as the genes for the opioid propeptides proenkephalin (Penk) and prodynorphin (Pdyn). The genetic mapping was performed using a panel of DNA samples from an interspecific cross [C3H/HeJ-gld and (C3H/HeJ-gld x Mus spretus)Fi] that has been characterized for more than 800 markers throughout the genome. The genes are localized on mouse Chr 1 (Oprk, 10 cM from the centromere), Chr 2 (Pdyn, 75 cM from the centromere), Chr 4 (Penk, 1 cM from the centromere) and Chr 10 (Oprm, 10 cM from the centromere). Interestingly, the gene for the mu receptor is located in the same region as a Quantitative Trait Locus for high morphine consumption, thus raising the possibility of its direct role in drug abuse mechanisms.  相似文献   

17.
18.
19.
Ultrastructural aspects of the extracellular matrix (ECM) in the midaxial region of dysraphic embryos of the loop-tail (Lp) mutant mouse were analyzed by means of electron microscopy. In 17–23 somite embryos, ultrastructural differences in the ECM occurred with respect to the presence of a pair of long trailing basal laminar strands extending continuously from the ventral notochordal cells to the gut in abnormal (Lp/Lp) embryos, in contrast to short, ragged, discontinuous strands in normal (+ /+;Lpj +) embryos. The ultrastructural localization and configuration of fibronectin (FN) and laminin (L) associated with these strands, however, were similar in normals and abnormals. In addition, FN occurred over interstitial bodies, fibrils, and sporadically along the basal laminae of the neural tube (or folds), notochord, gut, and vessels, whereas L was largely confined to the basal laminae. The results indicate that although the ultrastructural pattern of FN and L reactivity are similar in normal and abnormal embryos, a disturbance in the manner whereby the notochord detaches from the gut in dysraphic embryos may be of causal significance in the etiology of dysraphism in this mutant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号