首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the intact kidney, renal proximal tubule cells accumulate p-aminohippurate (PAH) via a basolateral, probenecid- and sodium-sensitive transport system. Primary cultures of rabbit proximal tubule cells retain sodium-glucose co-transport in culture, but little is known about PAH transport in this system. Purified proximal tubule cells from a rabbit were grown in culture and assessed for PAH and alpha-methyl-D-glucoside uptake capacities as well as proximal tubule marker enzyme activities. Control PAH uptake on collagen-coated filters (20 +/- 3 pmol/mg protein.min; n = 8) was not significantly different from uptake in the presence of 1 mM probenecid (19 +/- 4 pmol/mg protein.min; n = 8). Uptake from the basal side of the cell was 3.9 +/- 0.7 times greater than that from the apical side. In multi-well plate studies, the uptake was significantly reduced by removing sodium from the medium and stimulated by coating the wells with collagen. Glutarate (10 mM) had no effect on the uptake of PAH. Other differentiated proximal tubule characteristics were retained in culture, including the ability to form domes and to transport glucose by a phlorizin-sensitive system. Phlorizin-sensitive 1 mM alpha-methyl-D-glucoside uptake was 134 +/- 42 pmol/mg protein.min (n = 7; P less than 0.02). The proximal tubule marker enzymes alkaline phosphatase and gamma-glutamyltranspeptidase, increased in activity in the cultures after confluence. It was concluded that whereas some differentiated properties were retained during primary culture of rabbit proximal tubule cells, the PAH transport system was selectively lost or modified from that present in the intact kidney.  相似文献   

2.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

3.
Summary A primary rabbit kidney epithelial cell culture system has been developed which retains differentiated functions of the renal proximal tubule. In addition, the cells have a distinctive metabolism and spectrum of hormone responses. The primary cell were observed to retain in vitro a Na+-dependent sugar transport system (distinctive of the proximal segment of the nephron) and a Na+-dependent phosphate transport system. Both of these transport processes are localized on the apical membrane of proximal tubule cells in vivo. In addition, probenicid-sensitivep-aminohippurate (PAH) uptake was observed in basolateral membranes of the primary tubule cells, and the PAH uptake by these vesicles occurred at a rate that was very similar to that observed with membranes derived from the original tissue. Several other characteristics of the primary cells were examined, including hormone-sensitive cyclic AMP production and phosphoenolpyruvate carboxykinase (PEPCK) activity. Like the cells in vivo, the primary proximal tubule cells were observed to produce significant cyclic AMP in response to parathyroid hormone, but not in response to arginine vasopressin or salmon calcitonin. Significant PEPCK acivity was observed in the particulate fraction derived from a homogenate of primary rabbit kidney proximal tubule cells. This paper was presented at a Symposium on the Physiology and Toxicology of the Kidney In Vitro co-sponsored by The Society of Toxicology (SOT) and the Tissue Culture Association held at the 27th annual meeting of the SOT in Dallas, Texas in 1988. This work was supported by Grant 9 RO1 DK40286-07 from the National Institutes of Health, Bethesda, MD, and NIH Research Career Development Award 1 K04 CA 0088-01 to M.T.  相似文献   

4.
Uptake of D-alanine against a concentration gradient has been shown to occur with isolated luminal-membrane vesicles from pars convoluta or pars recta of rabbit proximal tubule. Renal D-alanine transport systems, displaying the following characteristics, were shown: (1) In vesicles from pars convoluta, the uptake of D-alanine was mediated by both Na+-dependent and Na+-independent transport processes. It was found that an inwardly directed H+-gradient could drive the transport of D-alanine into the vesicles both in the presence and absence of Na+. Thus, in addition to Na+, the transport of D-alanine is influenced by the H+-gradient. (2) In vesicles from pars recta, the transient accumulation of D-alanine was strictly dependent on Na+, since no 'overshoot' was ever observed in the absence of Na+. Although the Na+-dependent uptake of D-alanine was stimulated at acid pH, H+ did not substitute for Na+, as it apparently does in pars convoluta, but instead potentiated the Na+ effect. (3) Addition of L-alanine to vesicle preparations, both from pars convoluta and from pars recta, specifically inhibited renal uptake of D-alanine. A comparison between the transport characteristics of D- and L-alanine indicated that these two isomers of alanine probably share common transport systems located along the proximal tubule of rabbit kidney.  相似文献   

5.
The uptake of labeled inorganic phosphate into primary rabbit kidney proximal tubule cells has been examined. Phosphate was accumulated into the primary proximal tubule cells against a concentration gradient. This accumulation was sensitive to inhibition by metabolic inhibitors. The dependence of phosphate uptake on the extracellular phosphate concentration was examined. Similarities were observed between primary proximal tubule cells and the LLC-PK1 cell line in these regards. These phosphate uptake data were then plotted on a Lineweaver-Burke plot. A nonlinear plot was obtained, which suggested that phosphate uptake occurs by means of a Na+ dependent, carrier mediated process, as well as by another Na+ independent mechanism. The pH dependence of phosphate uptake was also examined. Unlike previous observations with LLC-PK1 cells, optimal phosphate uptake occurred at pH 6.5. However, this difference between the two cell culture systems may possibly be explained by differences in uptake conditions. The dependence of phosphate uptake on the extracellular NaCl concentration was examined at three different pH values. The rate of phosphate uptake at pH 7.0 was observed to saturate at a lower NaCl concentration than at either pH 6.0 or pH 6.5. Furthermore, the optimal rate of phosphate uptake at pH 7.0 was observed to be higher than at the other two pH values studied when the NaCl concentration was below 120 mM. However, when the NaCl concentration was raised to 150 mM, optimal phosphate was observed to occur at pH 6.5 rather than at pH 7.0. These observations may be explained if the pH affects not only the rate of phosphate uptake but also the affinity of the phosphate uptake system for sodium. Phosphate uptake was also observed to be sensitive to several agents, Na2 X SO4 and NaSCN, which affect the membrane potential. As observed with phosphate uptake by LLC-PK1 (and renal brush border membrane vesicles), phosphate uptake was highly sensitive to inhibition by the phosphate analogue arsenate. Novel observations were that the phosphate analogue vanadate and its cellular metabolite vanadyl stimulated the initial rate of phosphate uptake.  相似文献   

6.
The mechanisms of renal transport of short chain fatty acids by luminal membrane vesicles prepared from pars convoluta or pars recta of rabbit proximal tubule were studied by a Millipore filtration technique and by a spectrophotometric method using a potential-sensitive carbocyanine dye. Both luminal membrane vesicle preparations take up propionate and butyrate by strictly Na+-dependent transport systems, although with different characteristics. The uptake of short chain fatty acids by membrane vesicles from the pars convoluta was insensitive to changes in membrane potential, which is indicative of electroneutral transport of these compounds. Furthermore, kinetic studies showed that the Na+-dependent, but electrically silent transport of propionate is saturable (Km = 10.9 +/- 1.1 mM and Vmax = 3.6 +/- 0.2 nmol/mg protein per 20 s) and is unaffected by the presence of L- and D-lactate, indicating that these monocarboxylic acids did not share the same common transport system. In the luminal membrane vesicles from the pars recta, the uptake of propionate and butyrate was mediated by an Na+-dependent electrogenic transport process, since addition of the organic compounds to these vesicle/dye suspensions depolarized the membrane vesicles and the renal uptake of propionate and butyrate was enhanced by K+ diffusion potential induced by valinomycin. Competition experiments revealed that in contrast to the transport of propionate by vesicles from the pars convoluta, the Na+-dependent electrogenic transport of short chain fatty acids in vesicles from the pars recta occurred via the same transport system that is responsible for the reabsorption of L- and D-lactate in this region of rabbit kidney proximal tubule.  相似文献   

7.
We studied the effect of gentamicin on Na+-dependent D-glucose transport into brush-border membrane vesicles isolated from rabbit kidney outer cortex (early proximal tubule) and outer medulla (late proximal tubule) in vitro. We found the same osmotically active space and nonspecific binding between control and gentamicin-treated brush-border membrane vesicles. There was no difference in the passive permeability properties between control and gentamicin-treated brush-border membrane vesicles. Kinetic analyses of D-glucose transport into 1 mM gentamicin-treated brush-border membrane vesicles demonstrated that gentamicin decreased Vmax in the outer cortical preparation, while it did not affect Vmax in the outer medullary preparation. With regard to Km, there was no effect of gentamicin in any vesicle preparation. When brush-border membrane vesicles were incubated with higher concentrations of gentamicin, Na+-dependent D-glucose transport was inhibited dose-dependently in both outer cortical and outer medullary preparations. Dixon plots yield inhibition constant Ki = 4 mM in the outer cortical preparation and Ki = 7 mM in the outer medullary preparation. These results indicate that the Na+-dependent D-glucose transport system in early proximal tubule is more vulnerable to gentamicin toxicity than that in late proximal tubule.  相似文献   

8.
Biotin transport was studied using brush-border and basolateral membrane vesicles isolated from rabbit kidney cortex. An inwardly directed Na+ gradient stimulated biotin uptake into brush-border membrane vesicles and a transient accumulation of the anion against its concentration gradient was observed. In contrast, uptake of biotin by basolateral membrane vesicles was found to be Na+-gradient insensitive. Generation of a negative intravesicular potential by valinomycin-induced K+ diffusion potentials or by the presence of Na+ salts of anions of different permeabilities enhanced biotin uptake by brush-border membrane vesicles, suggesting an electrogenic mechanism. The Na+ gradient-dependent uptake of biotin into brush-border membrane vesicles was saturable with an apparent Km of 28 microM. The Na+-dependent uptake of tracer biotin was significantly inhibited by 50 microM biotin, and thioctic acid but not by 50 microM L-lactate, D-glucose, or succinate. Finally, the existence in both types of membrane vesicles of a H+/biotin- cotransport system could not be demonstrated. These results are consistent with a model for biotin reabsorption in which the Na+/biotin- cotransporter in luminal membranes provides the driving force for uphill transport of this vitamin.  相似文献   

9.
Primary cultures of rabbit-kidney epithelial cells derived from purified proximal tubules were maintained without fibroblast overgrowth in a hormone-supplemented serum-free medium (Medium RK-1). A hormone- deletion study indicated that the primary cultures derived from purified rabbit proximal tubules required all of the three supplements in Medium RK-1 (insulin, transferrin, and hydrocortisone) for optimal growth but did not grow in response to EGF and T3. In contrast, the epithelial cells in primary cultures derived from an unpurified preparation of rabbit kidney tubules and glomeruli grew in response to EGF and T3, as well as insulin, transferrin, and hydrocortisone. These observations suggest that kidney epithelial cells derived from different segments of the nephron grow differently in response to hormones and growth factors. Differentiated functions of the primary cultures derived from proximal tubules were examined. Multicellular domes were observed, indicative of transepithelial solute transport by the monolayers. The proximal tubule cultures also accumulated alpha- methylglucoside (alpha-MG) against a concentration gradient. However, little or no alpha-MG accumulation was observed in the absence of Na+. Metabolic inhibitor studies also indicated that alpha-MG uptake by the primaries is an energy-dependent process, and depends upon the activity of the Na+/K+ ATPase. Phlorizin at 0.1 mM significantly inhibited 1 mM alpha-MG uptake whereas 0.1 mM phloretin did not have a significant inhibitory effect. Similar observations have been made concerning the Na+-dependent sugar-transport system located on the lumenal side of the proximal tubule, whereas the Na+-independent sugar transporter on the peritubular side is more sensitive to inhibition by phloretin than phlorizin. The cultures also exhibited PTH-sensitive cyclic AMP synthesis and brush-border enzymes typical of proximal cells. However, the activities of the enzymes leucine aminopeptidase, alkaline phosphatase, and gamma-glutamyl-transpeptidase were lower in the cultures than in purified proximal-tubule preparations from which they are derived.  相似文献   

10.
p-Aminohippuric acid (PAH) uptake was studied in basal-lateral membrane vesicles prepared from rabbit renal cortex. An outwardly directed hydroxyl gradient (pHo = 6.0, pHi = 7.6) stimulated PAH uptake slightly over that when the internal and external pH values were equal at 7.6. A 100 mM sodium gluconate gradient directed into the basal-lateral membrane vesicles increased PAH uptake about 2-fold over that when N-methyl-D-glucamine or potassium gluconate gradients were present. When hydroxyl and sodium gradients were simultaneously imposed (pHo = 6.0, pHi = 7.6 and 100 mM sodium gluconate extravesicularly) PAH uptake was stimulated greater than with the pH or Na+ gradient alone. In fact, an 'overshoot' was observed. Countertransport experiments showed that either intravesicular PAH or intravesicular PAH and Na+ could stimulate 3H-PAH uptake. Probenecid, an inhibitor of organic anion transport, inhibited both the hydroxyl-stimulated and Na+ gradient-stimulated PAH uptake but the greatest inhibition by probenecid was seen when the hydroxyl and sodium gradients were both present. Thus, it is proposed that the driving force for PAH accumulation across the basal-lateral membrane of the proximal tubule is a transport system which moves Na+ and PAH into the cell for an hydroxyl ion leaving the cell, i.e. a sodium-dependent anion-anion exchange system.  相似文献   

11.
Membrane transport pathways for transcellular secretion of urate across the proximal tubule were investigated in avian kidney. The presence of coupled urate/alpha-ketoglutarate exchange was investigated in basolateral membrane vesicles (BLMV) by [(14)C]urate and [alpha-(3)H]ketoglutarate flux measurements. An inward Na gradient induced accumulation of alpha-ketoglutarate of sufficient magnitude to suggest a Na-dicarboxylate cotransporter. An inward Na gradient also induced concentrative accumulation of urate in the presence of alpha-ketoglutarate but not in its absence, suggesting urate/alpha-ketoglutarate exchange. alpha-Ketoglutarate-dependent stimulation of urate uptake was not observed in brush-border membrane vesicles. An outward urate gradient induced concentrative accumulation of alpha-ketoglutarate. alpha-Ketoglutarate-coupled urate uptake was specific for alpha-ketoglutarate, Cl dependent, and insensitive to membrane potential. alpha-Ketoglutarate-coupled urate uptake was inhibited by increasing p-aminohippurate (PAH) concentrations, and alpha-ketoglutarate-coupled PAH uptake was observed. alpha-Ketoglutarate-coupled PAH uptake was inhibited by increasing urate concentrations, and an outward urate gradient induced concentrative accumulation of PAH. These results suggest a Cl-dependent, alpha-ketoglutarate-coupled anion exchange mechanism as a pathway for active urate uptake across the basolateral membrane of urate-secreting proximal tubule cells.  相似文献   

12.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

13.
Recent studies suggest that the major pathway for exit of HCO3- across the basolateral membrane of the proximal tubule cell is electrogenic Na+/HCO3- co-transport. We therefore evaluated the possible presence of Na+/HCO3- co-transport in basolateral membrane vesicles isolated from the rabbit renal cortex. Imposing an inward HCO3- gradient induced the transient uphill accumulation of Na+, and imposing an outward Na+ gradient caused HCO3- -dependent generation of an inside-acid pH gradient as monitored by quenching of acridine orange fluorescence, findings consistent with the presence of Na+/HCO3- co-transport. In the absence of other driving forces, generating an inside-positive membrane potential by imposing an inward K+ gradient in the presence of valinomycin caused net Na+ uptake via a HCO3- -dependent pathway, indicating that Na+/HCO3- co-transport is electrogenic and associated with a flow of negative charge. Imposing transmembrane Cl- gradients did not appreciably affect HCO3- gradient-stimulated Na+ influx, suggesting that Na+/HCO3- co-transport is not Cl- -dependent. The rate of HCO3- gradient-stimulated Na+ influx was a simple, saturable function of the Na+ concentration (Km = 9.7 mM, Vmax = 160 nmol/min/mg of protein), was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (I50 = 100 microM), but was inhibited less than 10% by up to 1 mM amiloride. We could not demonstrate a HCO3- -dependent or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive component of Na+ influx in microvillus membrane vesicles. This study thus indicates the presence of a transport system mediating electrogenic Na+/HCO3- co-transport in basolateral, but not luminal, membrane vesicles isolated from the rabbit renal cortex. Analogous to the use of renal microvillus membrane vesicles to study Na+/H+ exchange, renal basolateral membrane vesicles may be a useful model system for examining the kinetics and possible regulation of Na+/HCO3- co-transport.  相似文献   

14.
This paper reports the preparation and describes the properties of three renal tubular cell lines derived using SV40 infection of primary cultures of rabbit kidney cortical cells, enriched in proximal cells. RC.SV1 was initially derived from cultures grown in the presence of fetal calf serum exhibiting a low degree of proximal differentiation. The cells were subsequently adapted to grow in serum-free hormonally defined medium and display basic properties of proximal tubule cells including well-developed apical microvilli, strong expression of brush-border hydrolases, Na+-coupled glucose uptake, and increased cyclic AMP production when exposed to PTH. The other two cell lines were derived from cultures in serum-free hormonally defined medium and propagated in the same medium. They are characterized by some common properties including rare and short microvilli, low expression of apical hydrolases, and low or undetectable Na+-dependent glucose uptake, but differ by their abilities to respond by an increase in cAMP to various hormonal stimuli. RC.SV2 cells are sensitive to calcitonin and to a lesser extent to isoproterenol and PTH, suggesting that they may originate from the thick ascending limb of Henle's loop and the bright portion of the distal tubule. RC.SV3 responds essentially to isoproterenol and arginine vasopressin, suggesting a more distal origin (late distal and initial collecting tubule). Emergence of distal cell lines from cultures exhibiting proximal characteristics may be related to distal cell overgrowth as suggested by analysis of growth kinetics and increased Na+/H+ exchanger activity in RC.SV2 compared with RC.SV1.  相似文献   

15.
We examined the mechanism of prostaglandin E2 transport in rabbit renal basolateral membrane vesicles which were predominantly oriented right-side-out. In the presence of an inwardly directed H+ gradient, the initial rate of uptake was markedly accelerated and the influx of prostaglandin E2 resulted in a transient accumulation (overshoot) above the equilibrium value. Both H+-independent and H+-stimulated prostaglandin E2 uptake were shown to be insensitive to valinomycin-induced K+ diffusion potentials. Intravesicular probenecid inhibited the pH gradient-stimulated uptake of prostaglandin E2 but did not affect the pH-stimulated uptake of thiocyanate and acetate which enter membranes via ionic and nonionic diffusion, respectively. Finally, the existence of a Na+ cotransport or of a K+ antiport pathway for prostaglandin E2 could not be demonstrated. Thus, these data demonstrate the presence of an electrically neutral H+-prostaglandin E2 cotransport or OH- -prostaglandin E2 antiport mechanism in the basolateral membrane of the rabbit proximal tubule.  相似文献   

16.
The Na+-dependent transport of D-glucose was studied in brush border membrane vesicles isolated from the rabbit renal cortex. The presence of a Na+ gradient between the external incubation medium and the intravesicular medium induced a marked stimulation of D-glucose uptake. Accumulation of the sugar in the vesicles reached a maximum and then decreased, indicating efflux. The final level of uptake of the sugar in the presence of the Na+ gradient was identical with that attained in the absence of the gradient, suggesting that equilibrium was established. At the peak of the overshoot the uptake of D-glucose was more than 10-fold the equilibrium value. These results suggest that the imposition of a large extravesicular to intravesicular gradient of Na+ effects the transient movement of D-glucose into renal brush border membranes against its concentration gradient. The stimulation of D-glucose uptake into the membranes was specific for Na+. The rate of uptake was enhanced with increased concentration of Na+. Increasing Na+ in the external medium lowered the apparent Km for D-glucose. The Na+ gradient effect on D-glucose transport was dissected into a stimulatory effect when Na+ and sugar were on the same side of the membrane (cis stimulation) and an inhibitory effect when Na+ and sugar were on opposite sides of the membrane (trans inhibition). The uptake of D-glucose, at a given concentration of sugar, reflected the sum of the contributions from a Na+-dependent transport system and a Na+-independent system. The relative stimulation of D-glucose uptake by Na+ decreased as the sugar concentration increased. It is suggested, however, that at physiological concentrations of D-glucose the asymmetry of Na+ across the brush border membrane might fully account for uphill D-glucose transport. The physiological significance of the findings is enhanced additionally by observations that the Na+-dependent D-glucose transport system in the membranes in vitro possessed the sugar specificities and higg phlorizin sensitivity characteristic of more intact preparations. These results provide strong experimental evidence for the role of Na+ in transporting D-glucose across the renal proximal tubule luminal membrane.  相似文献   

17.
Although in LLC-PK cells ATP depletion has been shown to result in alterations of cytoskeleton actin and an inhibition of Na+/H+ exchanger activity, there is little information concerning the regulation of this exchanger in the distal luminal membrane by ATP and actin filaments. The present study examined the direct effect of ATP and cytochalasin B on the Na+/H+ exchanger activity in the proximal and distal tubule luminal membranes. The presence of 100 microM ATP in the luminal membrane vesicles from rabbit proximal tubules did not influence the Ethyl Isopropyl Amiloride sensitive Na+ uptake by these membranes. In contrast, the same treatment of luminal membranes from distal tubules significantly enhanced the exchanger activity from 0.22 +/- 0.04 to 0.39 +/- 0.08 pM/microg/10 sec (P < 0.02). When ATP was replaced by its nonhydrolysable form, ATPgammas, the effect on the distal luminal membrane was strongly diminished suggesting that the action of the nucleotide implicates a phosphorylation step. Confirming this hypothesis, addition of 300-microM-Rp cAMP, a protein kinase A inhibitor, completely abolished the effect of ATP. In view of the fact that a tight relationship has been described between ATP, the cytoskeleton complex and the exchanger activity, we studied the effect of cytochalasin B on this activity. The presence of 20 microM cytochalasin B in the distal luminal membrane vesicles induced, as observed with ATP, a significant increase in the Na+ uptake. However, the actions of ATP and cytochalasin B were not additive. These results suggest that firstly, ATP and short actin filaments of the cytoskeleton regulate the distal luminal isoform through an intramembranous mechanism and secondly, a phosphorylation mechanism is, at least partially, implicated in the action of ATP. In contrast, the proximal tubule exchanger is regulated through different mechanisms.  相似文献   

18.
We characterized the uptake of carnitine in brush-border membrane (BBM) and basolateral membrane (BLM) vesicles, isolated from mouse kidney and intestine. In kidney, carnitine uptake was Na(+)-dependent, showed a definite overshoot and was saturable for both membranes, but for intestine, it was Na(+)-dependent only in BLM. The uptake was temperature-dependent in BLM of both kidney and intestine. The BBM transporter in kidney had a high affinity for carnitine: apparent K(m)=18.7 microM; V(max)=7.85 pmol/mg protein/s. In kidney BLM, similar characteristics were obtained: apparent K(m)=11.5 microM and V(max)=3.76 pmol/mg protein/s. The carnitine uptake by both membranes was not affected within the physiological pH 6.5-8.5. Tetraethylammonium, verapamil, valproate and pyrilamine significantly inhibited the carnitine uptake by BBM but not by BLM. By Western blot analysis, the OCTN2 (a Na(+)-dependent high-affinity carnitine transporter) was localized in the kidney BBM, and not in BLM. Strong OCTN2 expression was observed in kidney and skeletal muscle, with no expression in intestine in accordance with our functional study. We conclude that different polarized carnitine transporters exist in kidney BBM and BLM. L-Carnitine uptake by mouse renal BBM vesicles involves a carrier-mediated system that is Na(+)-dependent and is inhibited significantly by specific drugs. The BBM transporter is likely to be OCTN2 as indicated by a strong reactivity with the anti-OCTN2 polyclonal antibody.  相似文献   

19.
The characteristics of D- and L-lactate transport in luminal-membrane vesicles derived from whole cortex, from the pars convoluta and from the pars recta of rabbit kidney proximal tubule were studied. It was found that uptake of both isomers in vesicles from whole cortex occurred by means of dual electrogenic transport systems, namely a low-affinity system and a high-affinity system. Uptake of both isomers in vesicles from the pars recta was strictly Na+-dependent and is mediated via a single high-affinity common transport system. Vesicles from the pars convoluta contained a cation-dependent but Na+-unspecific low-affinity common transport system for these compounds. The physiological importance of this system is briefly discussed.  相似文献   

20.
Nicotinamide, like parathyroid hormone, is a rapidly acting specific inhibitor of Na+-dependent transport of phosphate (Pi) across the brush-border membrane of the proximal tubule of the mammalian kidney. Pretreatment of rats with colchicine (0.7 mg/kg body weight) for 1 h led to a significantly diminished phosphaturic response to parathyroid hormone (synthetic 1-34 fragment, 4 micrograms/kg). In contrast, the same dose of colchicine had no effect on the renal response to nicotinamide (1.0 g/kg), measured both as the change in urinary Pi excretion and as Na+-dependent Pi uptake by isolated brush-border membrane vesicles. These data suggest indirectly that the intracellular mechanism that mediates the inhibitory effects of nicotinamide on renal Pi transport does not require intact microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号