首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular chaperones are a group of proteins that are effective in vitro and in vivo folding aids and show a well-documented affinity for proteins lacking tertiary structure. The molecular chaperones were induced from lon(-) Escherichia coli mutants, affinity purified with an immobilized beta-casein column, and assayed for refolding activity with thermally and chemically denatured carbonic anhydrase B (CAB). Chaperones were induced with three treatments: heat shock at 39 degrees C, heat shock 42 degrees C, and alcohol shock with 3% ethanol (v/v). Lysates were applied to an immobilized beta-casein (30 mg/g beads) column. After removing nonspecifically bound proteins with 1 M NaCl, the molecular chaperones were eluted with cold water or 1 mM Mg-ATP. The cold water and Mg-ATP eluates were analyzed by SDS-PAGE. Western analysis identified five E. coli molecular chaperones including DnaK, DnaJ, GrpE, GroEL, and GroES. The purity of eluted chaperones was 58% with cold water and 100% with Mg-ATP. Refolding denatured CAB in the presence of Mg-ATP resulted in a 97% recovery of heat-denatured CAB and a 68% recovery of chemically denatured CAB. The use of affinity matrices for the chaperone purification which are effective as in vitro folding aids will be presented.  相似文献   

2.
The hyperthermophilic archaeon Pyrococcus furiosus (Pf) grows optimally at 100 °C and encodes single genes for the Group II chaperonin (Cpn), Pf Cpn and α-crystallin homolog, the small Heat shock protein (sHsp). Recombinant Pf Cpn is exceptionally thermostable and remained active in high ionic strength, and up to 3 M guanidine hydrochloride (Gdn-HCl). Pf Cpn bound specifically to denatured lysozyme and ATP addition resulted in protection of lysozyme from aggregation and inactivation at 100 °C. While complexed to heat inactivated lysozyme, Pf Cpn showed enhanced thermostability and ATPase activity, and increased the optimal temperature for ATPase activity from 90 to 100 °C. Protein substrate binding also stabilized the 16-mer oligomer of Pf Cpn in 3 M Gdn-HCl and activated ATPase hydrolysis in 3-5 M Gdn-HCl. In addition, Pf Cpn recognized and refolded the non-native lysozyme released from Pf sHsp, consistent with the inferred functions of these chaperones as the primary protein folding pathway during cellular heat shock.  相似文献   

3.
4.
Liu J  Shono M 《Plant & cell physiology》1999,40(12):1297-1304
We cloned and sequenced a full-length cDNA encoding the precursor of the mitochondria-located small heat shock protein (MT-sHSP) gene (LeHSP23.8) from tomato (Lycopersicon esculentum). The deduced protein precursor with a calculated molecular weight of 23.8 kDa was predicted to target mitochondria and was classified as a plant MT-sHSP. A single copy of LeHSP23.8 was found in tomato genomic DNA by southern-blot analysis. Northern-blot analysis revealed the heat inducible character of LeHSP23.8 mRNA. The LeHSP23.8 mRNA was hardly detectable at about 36 degrees C but accumulated markedly at 40 degrees C. The molecular chaperone function of LeHSP23.8 was confirmed in vitro. The recombinant LeHSP23.8 was able to enhance the renaturation of chemically denatured citrate synthase (CS). Moreover, the recombinant LeHSP23.8 protected CS from thermal inactivation and also promoted the renaturation of thermally inactivated citrate synthase.  相似文献   

5.
HrcA, a negative control repressor for chaperone expression from the obligate thermophile Bacillus thermoglucosidasius KP1006, was purified in a His-tagged form in the presence of 6 M urea but hardly renatured to an intact state due to extreme insolubility. Renaturation trials revealed that the addition of DNA to purified B. thermoglucosidasius HrcA can result in solubilization of HrcA free from the denaturing agent urea. Results from band shift and light scattering assays provided three new findings: (i) any species of DNA can serve to solubilize B. thermoglucosidasius HrcA, but DNA containing the CIRCE (controlling inverted repeat of chaperone expression) element is far more effective than other nonspecific DNA; (ii) B. thermoglucosidasius HrcA renatured with nonspecific DNA bound the CIRCE element in the molecular ratio of 2.6:1; and (iii) B. thermoglucosidasius HrcA binding to the CIRCE element was stable at below 50 degrees C whereas the complex was rapidly denatured at 70 degrees C, suggesting that the breakdown of HrcA is induced by heat stress and HrcA may act as a thermosensor to affect the expression of heat shock regulatory genes. These results will help to determine the nature of HrcA protein molecules.  相似文献   

6.
The modes of binding of heat shock protein 90 with phenyl-Sepharose, myristoylated AE-cellulose, and monomyristoylated lysozyme were studied to characterize a hydrophobic region(s) on the surface of the heat shock protein 90 molecule and the following results were obtained. (1) The binding of heat shock protein 90 with phenyl-Sepharose was inhibited by the addition of 30% ethylene glycol. This indicates that the binding involves a hydrophobic interaction. (2) The binding was strengthened by the addition of 10 mM Mg2+, Ca2+, Sr2+, and Ba2+ ions, but not by K+ or Na+ ions. (3) The binding of hsp 90 with phenyl-Sepharose decreased initially and then increased as the temperature was increased from 0 to 50 degrees C, with a minimum at around 35 degrees C. (4) Lowering the pH stimulated the binding of hsp 90 with phenyl-Sepharose. (5) Heat shock protein 90 bound to myristoylated AE-cellulose, which has aliphatic hydrophobic residues, but not to acetylated AE-cellulose. (6) Heat shock protein 90 bound to monomyristoylated lysozyme, but not to control unmodified lysozyme. Based on these results, the possible function of the hydrophobic region(s) of heat shock protein 90 in the interaction with hydrophobic proteins is discussed.  相似文献   

7.
Seppä L  Makarow M 《Eukaryotic cell》2005,4(12):2008-2016
We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24 degrees C, preconditioned at 37 degrees C, and treated briefly at 50 degrees C were shifted back to 24 degrees C, Hsp104 expression was strongly induced after 2.5 h of recovery and returned back to normal after 5 h. Here we show that the endoplasmic reticulum (ER) chaperones BiP/Kar2p and Lhs1p and the mitochondrial chaperone Hsp78 were also upregulated at the physiological temperature during recovery from thermal insult. The heat shock element (HSE) in the KAR2 promoter was found to be sufficient to drive DUR. The unfolded protein element could also evoke DUR, albeit weakly, in the absence of a functional HSE. BiP/Kar2p functions in ER translocation and assists protein folding. Here we found that the synthesis of new BiP/Kar2p molecules was negligible for more than an hour after the shift of the cells from 50 degrees C to 24 degrees C. Concomitantly, ER translocation was blocked, suggesting that preexisting BiP/Kar2p molecules or other necessary proteins were not functioning. Translocation resumed concomitantly with enhanced synthesis of BiP/Kar2p after 3 h of recovery, after which ER exit and protein secretion also resumed. For a unicellular organism like S. cerevisiae, conformational repair of denatured proteins is the sole survival strategy. Chaperones that refold proteins in the cytosol, ER, and mitochondria of S. cerevisiae appear to be subject to DUR to ensure survival after thermal insults.  相似文献   

8.
We have studied the interaction between lysozyme, destabilized by reducing its -S-S- bonds, and bovine eye lens alpha-crystallin, a member of the alpha-small heat shock protein superfamily. We have used gel filtration, photon correlation spectroscopy, and analytical ultracentrifugation to study the binding of lysozyme by alpha-crystallin at 25 degrees C and 37 degrees C. We can conclude that alpha-crystallin chaperones the destabilized protein in a two-step process. First the destabilized proteins are bound by the alpha-crystallin so that nonspecific aggregation of the destabilized protein is prevented. This complex is unstable, and a reorganization and inter-particle exchange of the peptides result in stable and soluble large particles. alpha-Crystallin does not require activation by temperature for the first step of its chaperone activity as it prevents the formation of nonspecific aggregates at 25 degrees C as well as at 37 degrees C. The reorganization of the peptides, however, gives rise to smaller particles at 37 degrees C than at 25 degrees C. Indirect evidence shows that the association of several alpha-crystallin/substrate protein complexes leads to the formation of very large particles. These are responsible for the increase of the light scattering.  相似文献   

9.
Eukaryotic small heat shock proteins (shps) act as molecular chaperones by binding to denaturing proteins, preventing their heat-induced aggregation and maintaining their solubility until they can be refolded back to their normal state by other chaperones. In this study we report on the functional characterization of a developmentally regulated shsp, hsp30, from the American bullfrog, Rana catesbeiana. An expression vector containing the open reading frame of the hsp30 gene was expressed in Escherichia coli. Purified recombinant hsp30 was recovered as multimeric complexes and was composed of a mixture of alpha-helical and beta-sheet-like structures as determined by circular dichroism analysis. Hsp30 displayed chaperone activity since it inhibited heat-induced aggregation of citrate synthase. Furthermore hsp30 maintained heat-treated luciferase in a folding competent state. For example, heat denatured luciferase when microinjected into Xenopus oocytes did not regain enzyme activity whereas luciferase heat denatured with hsp30 regained 100% enzyme activity. Finally, hsp30 protected the DNA restriction endonuclease, PstI, from heat inactivation. PstI incubated alone at 42 degrees C lost its enzymatic function after 1 h whereas PstI supplemented with hsp30 accurately digested plasmid DNA after 4 h at the elevated temperature. These results clearly indicate a molecular chaperone role for R. catesbeiana hsp30.  相似文献   

10.
Thioredoxin reductase was unfolded in 2 M guanidine hydrochloride as revealed by fluorescence and CD spectroscopy. Spontaneous refolding of denatured species resulted in low recovery of 10% catalytic activity after 4 h incubation at 25 degrees C. Addition of groEL or protein disulfide isomerase to the renaturation buffer accelerated the rate of recovery of catalytic activity to a level of 35 and 15%, respectively. Fluorescence spectroscopy has been used to investigate the interaction of groEL and protein disulfide isomerase with denatured thioredoxin reductase tagged with a fluorescent probe. The fluorescence emitted by the denatured protein was quenched upon binding to either groEL or protein disulfide isomerase. It is suggested that encapsulation of the protein substrate by the chaperone plays an important role in the process of folding by facilitating the formation of correctly folded species.  相似文献   

11.
MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50°C) and high (70°C) growth temperatures than under the optimal growth temperature for the organism (65°C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4°C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0°C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.  相似文献   

12.
Molecular chaperones, such as heat shock protein 70 (Hsp70) and its bacterial ortholog DnaK, play numerous important roles in protein folding. In vitro, this activity can be observed by incubating purified chaperones with denatured substrates and measuring the recovery of properly folded protein. In an effort to rapidly identify small molecules that modify this folding activity, we modified an existing method for use in 96-well plates. In this assay, denatured firefly luciferase was treated with a mixture of DnaK and prospective chemical modulators. The luminescence of refolded luciferase was used to follow the reaction progress, and counterscreens excluded compounds that target luciferase; thus, hits from these screens modify protein folding via their effects on the function of the chaperone machine. Using this platform, we screened a pilot chemical library and found five new inhibitors of DnaK and one compound that promoted folding. These chemical probes may be useful in studies aimed at understanding the many varied roles of chaperones in cellular protein folding. Moreover, this assay provides the opportunity to rapidly screen for additional compounds that might regulate the folding activity of Hsp70.  相似文献   

13.
Cycloamylose as an efficient artificial chaperone for protein refolding   总被引:7,自引:0,他引:7  
High molecular weight cyclic alpha-1,4-glucan (referred to as cycloamylose) exhibited an artificial chaperone property toward three enzymes in different categories. The inclusion properties of cycloamylose effectively accommodated detergents, which keep the chemically denatured enzymes from aggregation, and promoted proper protein folding. Chemically denatured citrate synthase was refolded and completely recovered it's enzymatic activity after dilution with polyoxyethylenesorbitan buffer followed by cycloamylose treatment. The refolding was completed within 2 h, and the activity of the refolded citrate synthase was quite stable. Cycloamylose also promoted the refolding of denatured carbonic anhydrase B and denatured lysozyme of a reduced form.  相似文献   

14.
Prefoldin is a molecular chaperone that captures a protein-folding intermediate and transfers it to a group II chaperonin for correct folding. Previous studies of archaeal prefoldins have shown that prefoldin only possesses holdase activity and is unable to fold unfolded proteins by itself. In this study, we have demonstrated for the first time that a prefoldin from hyperthermophilic archaeon, Pyrococcus horikoshii OT3 (PhPFD), exhibits refolding activity for denatured lysozyme at temperatures relatively lower than physiologically active temperatures. The interaction between PhPFD and denatured lysozyme was investigated by use of a surface plasmon resonance sensor at various temperatures. Although PhPFD showed strong affinity for denatured lysozyme at high temperature, it exhibited relatively weak interactions at lower temperature. The protein-folding seems to occur through binding and release from PhPFD by virtue of the weak affinity. Our results also imply that prefoldin might be able to contribute to the folding of some cellular proteins whose affinity with prefoldin is weak.  相似文献   

15.
Heat capacity and conformation of proteins in the denatured state   总被引:30,自引:0,他引:30  
Heat capacity, intrinsic viscosity and ellipticity of a number of globular proteins (pancreatic ribonuclease A, staphylococcal nuclease, hen egg-white lysozyme, myoglobin and cytochrome c) and a fibrillar protein (collagen) in various states (native, denatured, with and without disulfide crosslinks or a heme) have been studied experimentally over a broad range of temperatures. It is shown that the partial heat capacity of denatured protein significantly exceeds the heat capacity of native protein, especially in the case of globular proteins, and is close to the value calculated for an extended polypeptide chain from the known heat capacities of individual amino acid residues. The significant residual structure that appears at room temperature in the denatured states of some globular proteins (e.g. myoglobin and lysozyme) at neutral pH results in a slight decrease of the heat capacity, probably due to partial screening of the protein non-polar groups from water. The heat capacity of the unfolded state increases asymptotically, approaching a constant value at about 100 degrees C. The temperature dependence of the heat capacity of the native state, which can be determined over a much shorter range of temperature than that of the denatured state and, correspondingly, is less certain, appears to be linear up to 80 degrees C. Therefore, the denaturational heat capacity increment seems to be temperature-dependent and is likely to decrease to zero at about 140 degrees C.  相似文献   

16.
Reduced denatured lysozyme tends to aggregate at neutral pH and competition between productive folding and aggregation substantially reduces the efficiency of refolding. Trigger factor, a folding catalyst and chaperone can, depending on the concentration of trigger factor and the solution conditions, cause either a substantial increase (chaperone activity) or a substantial decrease (antichaperone activity) in the recovery of native lysozyme as compared with spontaneous refolding. When trigger factor is working as a chaperone, the reactivation rates of lysozyme are decelerated and aggregation decreases with increasing trigger factor concentrations. Under conditions where antichaperone activity of trigger factor dominates, the reactivation rates of lysozyme are accelerated and aggregation is increased. Trigger factor and lysozyme were both released from the aggregates on re-solubilization with urea indicating that trigger factor participates directly in aggregate formation and is incorporated into the aggregates. The apparently dual effect of trigger factor toward refolding of lysozyme is a consequence of the peptide binding ability and may be important in regulation of protein biosynthesis.  相似文献   

17.
H Schrder  T Langer  F U Hartl    B Bukau 《The EMBO journal》1993,12(11):4137-4144
Members of the conserved Hsp70 chaperone family are assumed to constitute a main cellular system for the prevention and the amelioration of stress-induced protein damage, though little direct evidence exists for this function. We investigated the roles of the DnaK (Hsp70), DnaJ and GrpE chaperones of Escherichia coli in prevention and repair of thermally induced protein damage using firefly luciferase as a test substrate. In vivo, luciferase was rapidly inactivated at 42 degrees C, but was efficiently reactivated to 50% of its initial activity during subsequent incubation at 30 degrees C. DnaK, DnaJ and GrpE did not prevent luciferase inactivation, but were essential for its reactivation. In vitro, reactivation of heat-inactivated luciferase to 80% of its initial activity required the combined activity of DnaK, DnaJ and GrpE as well as ATP, but not GroEL and GroES. DnaJ associated with denatured luciferase, targeted DnaK to the substrate and co-operated with DnaK to prevent luciferase aggregation at 42 degrees C, an activity that was required for subsequent reactivation. The protein repair function of DnaK, GrpE and, in particular, DnaJ is likely to be part of the role of these proteins in regulation of the heat shock response.  相似文献   

18.
We have expressed, purified, and characterized one small heat shock protein of the fission yeast Schizosaccharomyces pombe, SpHsp16.0. SpHsp16.0 was able to protect citrate synthase from thermal aggregation at 45 degrees C with high efficiency. It existed as a hexadecameric globular oligomer near the physiological growth temperature. At elevated temperatures, the oligomer dissociated into small species, probably dimers. The dissociation was completely reversible, and the original oligomer reformed immediately after the temperature dropped. Large complexes of SpHsp16.0 and denatured citrate synthase were observed by size exclusion chromatography and electron microscopy following incubation at 45 degrees C and then cooling. However, such large complexes did not elute from the size exclusion column incubated at 45 degrees C. The denatured citrate synthase protected from aggregation was trapped by a GroEL trap mutant at 45 degrees C. These results suggest that the complex of SpHsp16.0 and denatured citrate synthase at elevated temperatures is in the transient state and has a hydrophobic nature. Analyses of the interaction between SpHsp16.0 and denatured citrate synthase by fluorescence cross-correlation spectrometry have also shown that the characteristics of SpHsp16.0-denatured citrate synthase complex at the elevated temperature are different from those of the large complex obtained after the shift to lowered temperatures.  相似文献   

19.
20.
We have cloned, purified to homogeneity, and characterized as a molecular chaperone the Escherichia coli YedU protein. The purified protein shows a single band at 31 kDa on SDS-polyacrylamide gels and forms dimers in solution. Like other chaperones, YedU interacts with unfolded and denatured proteins. It promotes the functional folding of citrate synthase and alpha-glucosidase after urea denaturation and prevents the aggregation of citrate synthase under heat shock conditions. YedU forms complexes with the permanently unfolded protein, reduced carboxymethyl alpha-lactalbumin. In contrast to DnaK/Hsp70, ATP does not stimulate YedU-dependent citrate synthase renaturation and does not affect the interaction between YedU and unfolded proteins, and YedU does not display any peptide-stimulated ATPase activity. We conclude that YedU is a novel chaperone which functions independently of an ATP/ADP cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号