首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes of oxovanadium(IV) with ciprofloxacin and various uni-negative bidentate ligands have been prepared and their structure investigated using spectral, physicochemical and elemental analyses. The viscosity measurement suggest that the complexes bind to DNA by intercalation. The DNA binding efficacy was determined using absorption titration to obtain the binding constant (Kb). The DNA cleavage efficacy was determined using gel electrophoresis. The DNA binding and cleavage efficacy were increased in the complexes relative to the parental ligands and metal salts. Antibacterial activity has been assayed against two Gram( ? ve) i.e. Escherichia coli, Pseudomonas aeruginosa and three Gram( + ve) Staphylococcus aureus, Bacillus subtilis, Serratia marcescens microorganisms using the doubling dilution technique. The results show a significant increase in antibacterial activity in the complexes compared with parental ligands and metal salts.  相似文献   

2.
Three ligands which contain histidine and conjugated by a flexible linker, have been characterized and evaluated as DNA cleavage agents. The cleavage activity of metal complexes were evaluated by monitoring the conversion of supercoiled plasmid DNA (pUC19) (Form I) to nicked circular DNA (Form II) by agarose gel electrophoresis. The results showed that the cleavage activity of Cu(II) complexes was enhanced compared with histidine. Specially, at a high reaction concentration (0.2 mM), Cu(II) complexes can cleave the plasmid DNA with some selectivity.  相似文献   

3.
Six new mixed-ligand complexes of Co(II) with ciprofloxacin (Cip) and neutral bidentate ligands have been synthesized and characterized. Binding and cleavage of DNA with the complex were investigated using spectroscopic method, viscosity measurements and gel electrophoresis techniques. Antibacterial activity has been assayed against two Gram(?ve) and three Gram(+ve) microorganisms using the doubling dilution technique.  相似文献   

4.
Several mono- and bis- carbono- and thiocarbonohydrazone ligands have been synthesised and characterised; the X-ray diffraction analysis of bis(phenyl 2-pyridyl ketone) thiocarbonohydrazone is reported. The coordinating properties of the ligands have been studied towards Cu(II), Fe(II), and Zn(II) salts. The ligands and the metal complexes were tested in vitro against Gram positive and Gram negative bacteria, yeasts and moulds. In general, the bisthiocarbonohydrazones possess the best antimicrobial properties and Gram positive bacteria are the most sensitive microorganisms. Bis(ethyl 2-pyridyl ketone) thiocarbonohydrazone, bis(butyl 2-pyridyl ketone)thiocarbonohydrazone and Cu(H2nft)Cl2 (H2nft, bis(5-nitrofuraldehyde)thiocarbonohydrazone) reveal a strong activity with minimum inhibitory concentrations of 0.7 microgram ml-1 against Bacillus subtilis and of 3 micrograms ml-1 against Staphylococcus aureus. Cu(II) complexes are more effective than Fe(II) and Zn(II) ones. All bisthiocarbono- and carbonohydrazones are devoid of mutagenic properties, with the exception of the compounds derived from 5-nitrofuraldehyde. On the contrary a weak mutagenicity, that disappears in the copper complexes, is exhibited by monosubstituted thiocarbonohydrazones.  相似文献   

5.
Here in we tried to increase an antibacterial activity of ciprofloxacin drug due to formation of mixed-ligand complexes. Synthesized compounds were found to be more potent compare to drugs, ligands and metal salt against selective gram(+ve) and gram(?ve) organisms. Interaction of the complexes with nucleic acid (DNA) were investigated using spectroscopic technique, viscosity measurement and gel electrophoresis and it was found that the complexes bind to DNA via intercalative mode.  相似文献   

6.
Nickel is considered a weak carcinogen. Some researches have shown that bound proteins or synthetic ligands may increase the toxic effect of nickel ions. A systematic study of ligand effects on the interaction between nickel complexes and DNA is necessary. Here, we compared the interactions between DNA and six closely related Schiff base tetraazamacrocyclic oxamido nickel(II) complexes NiL(1-3a,1-3b). The structure of one of the six complexes, NiL(3b) has been characterized by single crystal X-ray analysis. All of the complexes can cleave plasmid DNA under physiological conditions in the presence of H(2)O(2). NiL(3b) shows the highest DNA cleavage activity. It can convert supercoiled DNA to nicked DNA then linear DNA in a sequential manner as the complex concentration or reaction time is increased. The cleavage reaction is a typical pseudo-first-order consecutive reaction with the rate constants of 3.27+/-0.14h(-1) (k(1)) and 0.0966+/-0.0042h(-1) (k(2)), respectively, when a complex concentration of 0.6mM is used. The cleavage mechanism between the complex and plasmid DNA is likely to involve hydroxyl radicals as reactive oxygen species. Circular dichronism (CD), fluorescence spectroscopy and gel electrophoresis indicate that the complexes bind to DNA by partial intercalative and groove binding modes, but these binding interactions are not the dominant factor in determining the DNA cleavage abilities of the complexes.  相似文献   

7.
A series of ternary copper(II) complexes have been derived using levofloxacin and five phenanthroline derivatives. Complexes were characterized using infrared spectroscopy, Thermogravimetric (TG)-analysis, fast atom bombardment mass spectroscopy and reflectance spectra. Synthesized complexes exhibit the only d-d band at ~ 666?nm points toward a distorted square pyramidal geometry at metal centre with one unpaired electron responsible for paramagnetic behaviour of whole moiety. Binding behaviour of the complexes toward Herring Sperm DNA were determined using ultraviolet-Vis (UV-Vis) absorption titration and viscometric titration experiment, where as the cleavage efficacy of the complexes toward pUC19 DNA was determined by electrophoresis in presence of ethidium bromide. Complexes exhibit superoxide dismutase-like activity with their IC(50) values ranging from 0.7917 to 1.7432 μM.  相似文献   

8.
A series of ternary copper(II) complexes have been derived using levofloxacin and five phenanthroline derivatives. Complexes were characterized using infrared spectroscopy, Thermogravimetric (TG)-analysis, fast atom bombardment mass spectroscopy and reflectance spectra. Synthesized complexes exhibit the only d-d band at ~ 666?nm points toward a distorted square pyramidal geometry at metal centre with one unpaired electron responsible for paramagnetic behaviour of whole moiety. Binding behaviour of the complexes toward Herring Sperm DNA were determined using ultraviolet-Vis (UV-Vis) absorption titration and viscometric titration experiment, where as the cleavage efficacy of the complexes toward pUC19 DNA was determined by electrophoresis in presence of ethidium bromide. Complexes exhibit superoxide dismutase–like activity with their IC50 values ranging from 0.7917 to 1.7432 µM.  相似文献   

9.
Gopal YN  Jayaraju D  Kondapi AK 《Biochemistry》1999,38(14):4382-4388
The ability of two structurally different ruthenium complexes to interfere with the catalytic activity of topoisomerase II was studied to elucidate their molecular mechanism of action and relative antineoplastic activity. The first complex, [RuCl2(C6H6)(dmso)], could completely inhibit DNA relaxation activity of topoisomerase II and form a drug-induced cleavage complex. This strongly suggests that the drug interferes with topoisomerase II activity by cleavage complex formation. The bi-directional binding of [RuCl2(C6H6)(dmso)] to DNA and topoisomerase II was verified by immunoprecipitation experiments which confirmed the presence of DNA and ruthenium in the cleavage complex. The second complex, Ruthenium Salicylaldoxime, could not inhibit topoisomerase II relaxation activity appreciably and also could not induce cleavage complex formation, though its DNA-binding characteristics and antiproliferation activity were almost comparable to those of [RuCl2(C6H6)(dmso)]. The results suggest that the difference in ligands and their orientation around a metal atom may be responsible for topoisomerase II poisoning by the first complex and not by the second. A probable mechanism is proposed for [RuCl2(C6H6)(dmso)], where the ruthenium atom interacts with DNA and ligands of the metal atom form cross-links with topoisomerase II. This may facilitate the formation of a drug-induced cleavage complex.  相似文献   

10.
Metal complexes of Schiff bases derived from sulfamethoxazole (SMZ) and sulfathiazole (STZ), converted to their β-lactam derivatives have been synthesized and experimentally characterized by elemental analysis, spectral (IR, 1H NMR, 13C NMR, and EI-mass), molar conductance measurements and thermal analysis techniques. The structural and electronic properties of the studied molecules were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The spectral and thermal analysis reveals that the Schiff bases act as bidentate ligands via the coordination of azomethine nitrogen to metal ions as well as the proton displacement from the phenolic group through the metal ions; therefore, Cu complexes can attain the square planner arrangement and Zn complexes have a distorted tetrahedral structure. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps. In addition, the antibacterial activities of synthesized compounds have been screened in vitro against various pathogenic bacterial species. Inspection of the results revealed that all newly synthesized complexes individually exhibit varying degrees of inhibitory effects on the growth of the tested bacterial species, therefore, they may be considered as drug candidates for bacterial pathogens. The free Schiff base ligands (12) exhibited a broad spectrum antibacterial activity against Gram negative Escherichia coli, Pseudomonas aeruginosa, and Proteus spp., and Gram positive Staphylococcus aureus bacterial strains. The results also indicated that the β-lactam derivatives (34) have high antibacterial activities on Gram positive bacteria as well as the metal complexes (58), particularly Zn complexes, have a significant activity against all Gram negative bacterial strains. It has been shown that the metal complexes have significantly higher activity than corresponding ligands due to chelation process which reduces the polarity of metal ion by coordinating with ligands.  相似文献   

11.
Copper(II) complexes are known to play a significant role in both naturally occurring biological systems and pharmaceutical agents. Recently, Cu(II) complexes have gained importance in DNA cleavage essential for the development of anticancer drugs and chemotherapeutic agents. Therefore, we have designed small molecules, consisting of a metal ion, N,N-donor ligands, and dipeptides, to probe their DNA-cleaving potential. Accordingly, the interaction of Cu(II) with ethylenediamine, histamine and the dipeptides histidylglycine, histidylalanine, and histidylleucine has been investigated. The binding modes, stabilities, and geometries of these complexes were determined by various physicochemical techniques. Their DNA-binding abilities were probed by absorption and fluorescence spectroscopy, and their DNA-cleavage potential was tested by electrophoresis.  相似文献   

12.
A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl]2+, (where BPEI?=?branched polyethyleneimine, LL?=?dipyrido[3,2-a:2′,3′-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer–metal complexes and calf thymus DNA have been performed by UV–Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer–metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc?>?dpq?>?ip. The analysis of the results suggests that polymer–cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer–cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer–cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.  相似文献   

13.
Five-coordinated oxovanadium(IV) complexes with ciprofloxacin and various uninegative bidentate amino acids have been prepared. The structure of complexes has been investigated using spectral, physicochemical, mass spectroscopy, and elemental analyses. The antimicrobial activities (MIC) of the complexes, ligands, metal salt, and some standard drugs have been evaluated using the doubling dilution technique against Staphylococcus aureus, Bacillus subtilis, Serratia marcescens (gram-positive), and Pseudomonas aeruginosa, and Escherichia coli (gram-negative) bacteria. The result shows the significant increase in the antibacterial activity of the ligand, metal, and ciprofloxacin on complexation. The interaction of the complexes with pBR322 DNA has been investigated using spectroscopic, gel electrophoresis, and viscometric techniques. This shows that the complexes can bind to pBR322 DNA by the intercalative mode. The superoxide dismutase-like activity of the complexes has been determined.  相似文献   

14.
A simple and rapid method has been used to compare the binding of platinum complexes to DNA, in a relatively qualitative manner. A compound bound at or near the restriction site inhibits enzymatic cleavage of DNA; inhibition of BamHI and EcoRI activity by complexes was assessed in this study using linearized pSV2-gpt plasmid. Our particular interest was in DNA binding by complexes of platinum (Pt) with known organic radiosensitizers (RS), to determine whether the Pt was able to target the RS to the DNA. Although the Pt-RS complexes investigated themselves have moderate radiosensitizing ability (like the inorganic complexes, cis- or trans-diamminedichloroplatinum(II), c- or t-DDP) none of the Pt-RS inhibit to the same extent as c- or t-DDP. However, there appears to be some correlation between enhanced radiosensitization by Pt-RS over Pt(RS)2, with the degree of Pt binding (as assessed by our assay). Our results using isolated DNA suggest that not all complexes bind well (e.g. Pt with two RS ligands), but that in certain cases (e.g. Pt with only one RS), it is possible to target the drug to the DNA. An ammine or amine ligand may be required in order to target a radiosensitizer to DNA using platinum.  相似文献   

15.
Fifteen platinum(II)-based metallointercalators have been synthesised that utilise substituted 1,10-phenanthroline (phen) ligands, including 5-chloro-1,10-phenanthroline (5-Cl-phen), 5-methyl-1,10-phenanthroline (5-CH3-phen), 5-amino-1,10-phenanthroline (5-NH2-phen), 5-nitro-1,10-phenanthroline (5-NO2-phen) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), and achiral ethylenediamine (en) and the chiral ancillary ligands 1S,2S-diaminocyclohexane (S,S-dach) and 1R,2R-diaminocyclohexane (R,R-dach). Their cytotoxicity in the L1210 murine leukaemia cell line was determined using growth inhibition assays. The most cytotoxic metal complexes are those that contain S,S-dach ancillary ligands and 5-CH3-phen intercalating ligands. One metallointercalator [Pt(5-CH3-phen)(S,S-dach)]Cl2 (5MESS), displays a 5-10-fold increase in cytotoxicity compared to the clinical agent cisplatin. From DNA binding experiments there appears to be no significant difference between any of the metal complexes, indicating that neither DNA binding affinity nor the mode of binding/DNA adduct formed is the sole determinant of the cytotoxicity of this family of platinum(II)-based metallointercalators.  相似文献   

16.
Design of chemically modified oligonucleotides for regulation of gene expression has attracted considerable attention over the past decades. One actively pursued approach involves antisense or antigene oligonucleotide constructs carrying reactive groups, many of these based on transition metal complexes. The complexes of Fe(II) and Co(II) with phthalocyanines are extremely good catalysts of oxidation of organic compounds with molecular oxygen and hydrogen peroxide. The binding of positively charged Fe(II) and Co(II) phthalocyanines with single- and double-stranded DNA was investigated. It was shown that these phthalocyanines interact with nucleic acids through an outside binding mode. The site-directed modification of single-stranded DNA by O2 and H2O2 in the presence of dimeric complexes of negatively and positively charged Fe(II) and Co(II) phthalocyanines was investigated. These complexes were formed directly on single-stranded DNA through interaction between negatively charged phthalocyanine in conjugate and positively charged phthalocyanine in solution. The resulting oppositely charged phthalocyanine complexes showed significant increase of catalytic activity compared with monomeric forms of phthalocyanines Fe(II) and Co(II). These complexes catalyzed the DNA oxidation with high efficacy and led to direct DNA strand cleavage. It was determined that oxidation of DNA by molecular oxygen catalyzed by complex of Fe(II)-phthalocyanines proceeds with higher rate than in the case of Co(II)-phthalocyanines but the latter led to a greater extent of target DNA modification.  相似文献   

17.
The coordination propensities of 4(N,N')-diethylaminosalicylaldehyde-4(N)-substituted thiosemicarbazones (H(2)L(1-4)) were investigated by reacting with an equimolar amount of [PdCl(2)(PPh(3))(2)]. The new complexes were characterized by various spectroscopic techniques. The structure determination of the complexes [Pd(DeaSal-tsc)(PPh(3))] (1), [Pd(DeaSal-mtsc)(PPh(3))] (2) and [Pd(DeaSal-etsc)(PPh(3))] (3) by X-ray crystallography showed that ligands are coordinated in a dibasic tridentate ONS donor fashion forming stable five and six membered chelate rings. The binding ability of complexes (1-4) to calf-thymus DNA (CT DNA) has been explored by absorption and emission titration methods. Based on the observations, an electrostatic and an intercalative binding mode have been proposed. The protein binding studies have been monitored by quenching of tryptophan and tyrosine residues in the presence of complexes using lysozyme as a model protein. As determined by MTT assays, complex 3 exhibited a higher cytotoxic effect towards human lung cancer cell line (A549) and liver cancer cells (HepG2). LDH, NO assay and cellular uptake of the complexes have been studied. Further, antibacterial activity studies of the complexes have been screened against the pathogenic bacteria such as Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, MIC50 values of the complexes showed that the complexes exhibited significant activity against the pathogens and among the complexes, 3 exhibited higher activity.  相似文献   

18.
Substantial progress is being made in the synthesis of functional mimics of metallonuclease enzymes, although a comparison with enzyme-promoted rates of reaction shows considerable room for future improvement. Improved ligand design allows facile substrate binding to metal ion catalysts, while maintaining the stability of the metal complex. The execution of double-strand cleavage of DNA under hydrolytic conditions has been reported and new levels of activity achieved. Finally, considerable progress has been made in identifying the molecular determinants for site-selective cleavage of RNA (in particular) and the design of ligands to achieve targeted recognition and cleavage.  相似文献   

19.
Ternary copper(II) complex [Cu(TAN)(O2CMe)] (1), where H-TAN is 1-(2-thiazolylazo)-2-naphthol, is prepared and structurally characterized by X-ray crystallography. The complex has a distorted square pyramidal (4+1) CuN2O3 coordination geometry with the acetate showing chelating axial-equatorial binding mode and TAN as a tridentate ligand bonded to the metal in the basal plane. Complex 1 is one-electron paramagnetic and displays ligand-to-metal charge transfer bands at 575 and 398 nm in dimethylformamide. The reactions of 1 with bases (B) like 1,10-phenanthroline (phen) and kanamycin-A (kan-A) afford ternary complexes of formulation [Cu(TAN)B]+ (B=phen, 2; kan-A, 3) under in situ reaction conditions. Complexes 2 and 3, prepared to explore their DNA binding and photo-induced DNA cleavage activity, display good binding propensity to calf thymus (CT) DNA giving a relative order: 2-3>1. The apparent binding constant (Kapp) for 1 is determined as 9.8 x 10(5)M(-1) from fluorescence quenching experiments using ethidium bromide. The quenching constants (K) values of 1-3, obtained from the Stern-Volmer plots, are 0.28, 0.52 and 0.49, respectively. All the complexes show photo-induced DNA cleavage activity when irradiated with a monochromatic UV light of 365 nm wavelength. A 200 microM complex 1 cleaves approximately 75% supercoiled (SC) DNA on 2h exposure time at 365 nm. A 50 microM solution of 1 in presence of 100 microM phen and kanamycin-A cleaves approximately 99% and approximately 60% SC DNA to its nicked circular form, respectively, for an exposure of 30 min. The complexes also exhibit significant cleavage of SC DNA on irradiation with visible light of wavelengths 532, 575 and 632.8 nm. Control experiments reveal the minor groove binding nature of the complexes. The cleavage reactions involve the formation reactive hydroxyl species as significant inhibition in the presence of dimethyl sulfoxide (DMSO) and catalase is observed. There is no apparent inhibition in cleavage in the presence of singlet oxygen quenchers like sodium azide. The cleavage activity has been found to be higher at the CT band position of 575 nm in comparison to those at 532 and 632.8 nm. The results indicate the involvement of the CT band in the photo-excitation process.  相似文献   

20.
Triazole derived Schiff bases and their metal complexes (cobalt(II), copper(II), nickel(II), and zinc(II)) have been prepared and characterized using IR, 1H and 13C NMR, mass spectrometry, magnetic susceptibility and conductivity measurements, and CHN analysis data. The structure of L2, N-[(5-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, has also been determined by the X-ray diffraction method. All the metal(II) complexes showed octahedral geometry except the copper(II) complexes, which showed distorted octahedral geometry. The triazole ligands and their metal complexes have been screened for their in vitro antibacterial, antifungal, and cytotoxic activity. All the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. It is revealed that all the synthesized complexes showed better activity than the ligands, due to coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号