首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD(P)(+)-glycohydrolase (NADase, EC 3.2.2.6) was partially purified from microsomal membranes of human spleen after solubilization with Triton X-100. In addition to NAD+ and NADP+, the enzyme catalyzed the hydrolysis of several NAD+ analogues and the pyridine base exchange reaction with conversion of NAD+ into 3-acetylpyridine adenine dinucleotide. The enzyme also catalyzed the synthesis of cyclic ADP-ribose (cADPR) from NAD+ and the hydrolysis of cADPR to adenosine diphosphoribose (ADPR). Therefore, this enzyme is a new member of multicatalytic NADases recently identified from mammals, involved in the regulation of intracellular cADPR concentration. Human spleen NADase showed a subunit molecular mass of 45 kDa, a pI of 4.9 and a Km value for NAD+ of 26 microM. High activation of ADPR cyclase activity was observed in the presence of Ag+ ions, corresponding to NADase inhibition.  相似文献   

2.
The catabolic pathway of nicotinamide adenin dinucleotide (NAD) in cultured pheochromocytoma rat cells (PC12) was investigated. The first evidence obtained in these studies was that, despite inducing cell differentiation, NGF treatment did not modify NAD catabolism. Following incubation of PC12 homogenate with NAD, ADP-ribose, AMP, IMP, and HYP was produced. The catabolic fate of AMP and ADPR so obtained was followed by monitoring to a final production of inosine and hypoxanthine through several enzymatic steps. When intact PC12 cells were incubated with NAD in the culture medium AMP, IMP and HYP were found but, no ADPR and cADPR were present in the growth medium. "Nucleotides analyses" carried out on the homogenate obtained from these cells, confirmed the absence of cADPR and an increase of intracellular ADPR. These results led us to believe that in PC12 cells the ADP ribosyl cyclase activity is absent and that NADase is an ecto-enzyme able to transfer the ADPR, produced from NAD catabolism, inside the cells.  相似文献   

3.
Homogeneous ATPase from rat liver mitochondria binds one mole of ADP per mole of enzyme reversibly, and with high affinity (KD = 1–2 μM). The high affinity binding site is highly specific for ADP and dADP. AMP does not bind. Agents which inhibit ATP hydrolysis have little inhibitory effect on the high affinity binding of ADP. These agents include adenylyl imidodiphosphate (AMP-PNP), azide, sucrose, and the divalent cation Mg++. AMP-PNP inhibits ATPase activity in phosphorylating membrane preparations of rat liver mitochondria by about 90 percent, but is without effect on ATP synthesis. These results are consistent with the view that the purified soluble, and the membrane-bound ATPase of rat liver mitochondria contain separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP.  相似文献   

4.
Spin-labelled derivatives of NAD+ and its structural components (i.e. adenosine, adenine, AMP, ADP and ADPR) have been synthesized. Their binding to pig heart lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) has been studied and dissociation constants have been determined. The spin-labelled derivatives of ADP and ADPR exhibit a tighter binding than the corresponding NAD+ derivative. This may be attributed to the repulsion of the positively charged nicotinamide ring by an histidine side chain in the active center of the enzyme.  相似文献   

5.
利用染料亲和层析(Cibacorn Blue柱)和离子交换层析(Macrosphere WCX柱)对长角血蜱Haemaphysalis longicornis唾液腺的腺苷三磷酸双磷酸酶进行纯化,经SDS-PAGE证实其分子量为66 kD。腺苷三磷酸双磷酸酶可以水解ATP和ADP,但对AMP无水解作用,水解ATP和ADP的Km值均为0.2 μmol/L,Vmax值分别为12.5和15.6 μmol/(min·mg)。腺苷三磷酸双磷酸酶水解ATP的中间产物是ADP,最终产物是AMP和正磷酸。表明腺苷三磷酸双磷酸酶水解ATP的位点是5'-核苷酸的γ-磷酸键,水解ADP的位点是5'-核苷酸的β-磷酸键。  相似文献   

6.
Permeability of Rickettsia prowazekii to NAD.   总被引:4,自引:3,他引:1       下载免费PDF全文
Rickettsia prowazekii accumulated radioactivity from [adenine-2,8-3H]NAD but not from [nicotinamide-4-3H]NAD, which demonstrated that NAD was not taken up intact. Extracellular NAD was hydrolyzed by rickettsiae with the products of hydrolysis, nicotinamide mononucleotide and AMP, appearing in the incubation medium in a time- and temperature-dependent manner. The particulate (membrane) fraction contained 90% of this NAD pyrophosphatase activity. Rickettsiae which had accumulated radiolabel after incubation with [adenine-2,8-3H]NAD were extracted, and the intracellular composition was analyzed by chromatography. The cells contained labeled AMP, ADP, ATP, and NAD. The NAD-derived intracellular AMP was transported via a pathway distinct from and in addition to the previously described AMP translocase. Exogenous AMP (1 mM) inhibited uptake of radioactivity from [adenine-2,8-3H]NAD and hydrolysis of extracellular NAD. AMP increased the percentage of intracellular radiolabel present as NAD. Nicotinamide mononucleotide was not taken up by the rickettsiae, did not inhibit hydrolysis of extracellular NAD, and was not a good inhibitor of the uptake of radiolabel from [adenine-2,8-3H]NAD. Neither AMP nor ATP (both of which are transported) could support the synthesis of intracellular NAD. The presence of intracellular [adenine-2,8-3H]NAD within an organism in which intact NAD could not be transported suggested the resynthesis from AMP of [adenine-2,8-3H]NAD at the locus of NAD hydrolysis and translocation.  相似文献   

7.
Effects of nucleotides on the proteolysis of histones in nuclei incubated at 37 degrees C during 1, 3 and 20 h were studied. It has been shown that the H1 histone is removed first during proteolysis and then the H3 and H2B histones are digested. The H4 histone is not cleaved even after 20 h incubation. PMSF and ATP inhibit the H1 cleavage when its structure was not disturbed before ATP, CTP, ADP, NAD+, AMP and NADH inhibit the partial cleavage of the core histones H3 and H2B. ATP, CTP, AMP and NADH prevent the total digestion of H2B. ATP and, at lower extent, CTP prevent the H3 digestion. ATP, CTP, ADP and NAD+ inhibit the cleavage of the H2A histone in the experiments with 20 h incubation, when H4 is only resistant in the absence of nucleotides. The data obtained suggest an important role of ATP and other nucleotides in maintaining the structure of histones and chromatin.  相似文献   

8.
The rates of acid-catalyzed hydrolysis of a hypermodified nucleoside, wyosine and its 5'-monophosphate were determined at various pH, temperature and buffer concentrations. The results show that despite distinct differences in structure and the glycosyl bond stability, the hydrolysis of wyosine proceeds via cleavage of the C-N bond by A-1 mechanism, analogously to simple nucleosides. Unlike majority of other monophosphates studied so far, wyosine 5'-monophosphate is not more stable than respective nucleoside.  相似文献   

9.
The acid-catalyzed hydrolysis of adenosine 5'-triphosphate (ATP) has been found to give rise both to adenosine 5'-diphosphate (ADP) and inorganic phosphate and to adenosine 5'-phosphate (AMP) and inorganic pyrophosphate. Kinetic and isotope studies on the mechanism of hydrolysis of ATP therefore depend on a knowledge of the mechanism of hydrolysis of the polyphosphate products, ADP and inorganic pyrophosphate. The latter reactions have been studied over the acidity range 1--5 M perchloric acid at 25 degrees C while the more complex problem of the hydrolysis of ATP has been followed at a single acidity (3 M perchloric acid). The positions of bond fission have been determined for both ATP and ADP.  相似文献   

10.
Understanding the regulatory properties of the activities of the V-type adenosine triphosphatase (ATPase) on tonoplast membranes is important in determining the mechanisms by which this enzyme controls cytoplasmic and vacuolar pH. The possible existence of a regulatory site for adenine nucleotides was examined by comparing the effects of ADP, adenylylimidodiphosphate (AMP-PNP) and 3'- o -(4-benzoyl) benzoyladenine 5'-triphosphate (BzATP) to those of the 2',3'-dialdehyde derivative of AMP (oAMP) and ATP by using highly purified tonoplast vesicles from maize ( Zea mays L. cv. FRB 73) roots. The addition of either AMP-PNP or BzATP reversibly inhibited the initial rate of proton transport catalyzed by the H+-ATPase in a concentration-dependent manner. Less than 20 μ M AMP-PNP or 50 μ M BzATP was sufficient to inhibit half the initial rate of proton transport in the presence of 2 m M ATP and an excess of Mg. Both analogs increased the Km for ATP and reduced the maximum enzyme velocity. The presence of ADP also inhibited proton transport. The characteristics of ADP-induced inhibition were similar to those of BzATP and AMP-PNP. The addition of the periodated derivative of AMP (oAMP) irreversibly inhibited the ATPase in a concentration and time-dependent manner similar to that reported previously (Chow et al. 1992, Plant Physiology 98: 44–52). Irreversible inhibition by oAMP reduced the maximum velocity of the tonoplast ATPase and was prevented by the addition of ATP. The presence of ADP, AMP-PNP or BzATP had no effect on irreversible inhibition by oAMP. The effects of ADP, AMP-PNP and BzATP on the kinetics of ATP utilization and the lack of protection against inhibition by oAMP argue in favor of at least two types of nucleotide binding sites on the V-type ATPase from maize root tonoplast membranes.  相似文献   

11.
Mitochondrial ATPase from rat liver mitochondria contains multiple nucleotide binding sites. At low concentrations ADP binds with high affinity (1 mole/mole ATPase, KD = 1–2 μM). At high concentrations, ADP inhibits ATP hydrolysis presumably by competing with ATP for the active site (KI = 240–300 μM). As isolated, mitochondrial ATPase contains between 0.6 and 2.5 moles ATP/mole ATPase. This “tightly bound” ATP can be removed by repeated precipitations with ammonium sulfate without altering hydrolytic activity of the enzyme. However, the ATP-depleted enzyme must be redissolved in high concentrations of phosphate to retain activity. AMP-PNP (adenylyl imidodiphosphate) replaces tightly bound ATP removed from the enzyme and inhibits ATP hydrolysis. AMP-PNP has little effect on high affinity binding of ADP. Kinetic studies of ATP hydrolysis reveal hyperbolic velocity vs. ATP plots, provided assays are done in bicarbonate buffer or buffers containing high concentrations of phosphate. Taken together, these studies indicate that sites on the enzyme not directly associated with ATP hydrolysis bind ATP or ADP, and that in the absence of bound nucleotide, Pi can maintain the active form of the enzyme.  相似文献   

12.
Extracellular NAD is degraded to pyridine and purine metabolites by different types of surface-located enzymes which are expressed differently on the plasmamembrane of various human cells and tissues. In a previous report, we demonstrated that NAD-glycohydrolase, nucleotide pyrophosphatase and 5'-nucleotidase are located on the outer surface of human skin fibroblasts. Nucleotide pyrophosphatase cleaves NAD to nicotinamide mononucleotide and AMP, and 5'-nucleotidase hydrolyses AMP to adenosine. Cells incubated with NAD, produce nicotinamide, nicotinamide mononucleotide, hypoxanthine and adenine. The absence of ADPribose and adenosine in the extracellular compartment could be due to further catabolism and/or uptake of these products. To clarify the fate of the purine moiety of exogenous NAD, we investigated uptake of the products of NAD hydrolysis using U-[(14)C]-adenine-NAD. ATP was found to be the main labeled intracellular product of exogenous NAD catabolism; ADP, AMP, inosine and adenosine were also detected but in small quantities. Addition of ADPribose or adenosine to the incubation medium decreased uptake of radioactive purine, which, on the contrary, was unaffected by addition of inosine. ADPribose strongly inhibited the activity of ecto-NAD-hydrolyzing enzymes, whereas adenosine did not. Radioactive uptake by purine drastically dropped in fibroblasts incubated with (14)C-NAD and dipyridamole, an inhibitor of adenosine transport. Partial inhibition of [(14)C]-NAD uptake observed in fibroblasts depleted of ATP showed that the transport system requires ATP to some extent. All these findings suggest that adenosine is the purine form taken up by cells, and this hypothesis was confirmed incubating cultured fibroblasts with (14)C-adenosine and analyzing nucleoside uptake and intracellular metabolism under different experimental conditions. Fibroblasts incubated with [(14)C]-adenosine yield the same radioactive products as with [(14)C]-NAD; the absence of inhibition of [(14)C]-adenosine uptake by ADPribose in the presence of alpha-beta methyleneADP, an inhibitor of 5' nucleotidase, demonstrates that ADPribose coming from NAD via NAD-glycohydrolase is finally catabolised to adenosine. These results confirm that adenosine is the NAD hydrolysis product incorporated by cells and further metabolized to ATP, and that adenosine transport is partially ATP dependent.  相似文献   

13.
ADP-ribosylation of skeletal muscle actin by Clostridium perfringens iota toxin increased the rate of exchange of actin-bound [gamma-32P]ATP by unlabelled ATP about twofold. Increased exchange rates were observed with ATP and ATP[gamma S], much less with ADP but not with AMP or NAD. ADP-ribosylation of skeletal muscle actin reduced "basal" and Mg2+ (1 mM)-induced ATP hydrolysis by about 80%. Similar inhibition of ATP hydrolysis was observed with liver actin ADP-ribosylated by Clostridium botulinum C2 toxin. The data indicate that ADP-ribosylation of actin at Arg-177 largely affects the ATP-binding and ATPase activity.  相似文献   

14.
Sarcoplasmic reticulum ATPase has been found to cleave the ATP analog adenyl-5'-yl imidodiphosphate in a calcium-dependent reaction. The reaction products were determined by 31P NMR to be inorganic phosphate and adenyl-5'-yl phosphoramidate (AMP-PN). AMP-PNP hydrolysis, like ATP hydrolysis, drives active Ca2+ accumulation by sarcoplasmic reticulum vesicles.  相似文献   

15.
1. Adult female Culex pipiens and Culiseta inornata have purinergic receptors that respond to extracellular ADP and related compounds. Stimulation of these receptors caused ingestion of artificial diets. Addition of bicarbonate to the saline solvent enhanced the phagostimulatory effect. Saline-bicarbonate was as effective a solvent as blood plasma for Cx. pipiens, and was used in the dose-effect determinations. Ranking of the potencies was: ADP greater than AMP-PNP greater than ATP = AMP greater than AMP-PCP much greater than 2'dAMP greater than 2'dADP greater than 2'dATP. At 1 mM concentration, ITP, GTP, CTP, UTP, c-AMP, 2'AMP, 3'AMP, DPG, or GSH + glucose caused fewer than 50% of the insects to gorge, as did 2'3'dd-ATP, A tetra P, and AMP-CPP at 100 microM. 2. The potency ranking for Cu. inornata was: ADP greater than AMP-PNP greater than ATP greater than AMP-PCP much greater than AMP much greater than AMP-S. The concentrations required to produce the ED50 response (inducing 50% of the test insects to gorge) were much higher than those required for Cx. pipiens; however, saline, not saline-bicarbonate, was used as the solvent. With the exception of the very low potency of AMP for Cu. inornata, the ADP potency index values for the other chemicals tested on both species are similar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Evidence is presented that mitochondrial ATPase has two types of sites that bind adenine nucleotides. The catalytic site, C, binds the substrates ATP, GTP, or ITP and the inhibitor guanylyl imidodiphosphate (GMP-PNP). A second type of site, R, binds ATP, ADP, adenylyl imidodiphosphate (AMP-PNP), and the chromium complexes of ATP or ADP. All of these substances binding to the R site inhibit the hydrolysis of ATP in a competitive manner; their inhibition of hydrolysis of ITP and GTP is noncompetitive. GMP-PNP inhibits oxidative phosphorylation in submitochondrial particles but AMP-PNP does not. The localization on mitochondrial membranes of sites for the binding of various antibiotics that inhibit oxidative phosphorylation is discussed.  相似文献   

17.
The rate of ATP hydrolysis in solutions of F-actin at steady state in 50 mM KC1, 0.1 mM CaC12 was inhibited by AMP and ADP. The inhibition was competitive with ATP (Km of about 600 microM) with Ki values of 9 microM for AMP and 44 microM for ADP. ATP hydrolysis was inhibited greater than 95% by 1 mM AMP. AMP had no effect on the time course of actin polymerization, ATP hydrolysis during polymerization, or the critical actin concentration. Simultaneous measurements of G-actin/F-actin subunit exchange and nucleotide exchange showed that nucleotide exchange occurred much more rapidly than subunit exchange; during the experiment over 50% of the F-actin-bound nucleotide was replaced when less than 1% of the F-actin subunits had exchanged. When AMP was present it was incorporated into the polymer, preventing incorporation of ADP from ATP in solution. F-actin with bound Mg2+ was much less sensitive to AMP than F-actin with bound Ca2+. These data provide evidence for an ATP hydrolysis cycle associated with direct exchange of F-actin-bound ADP for ATP free in solution independent of monomer-polymer end interactions. This exchange and hydrolysis of nucleotide may be enhanced when Ca2+ is bound to the F-actin protomers.  相似文献   

18.
No dependence was found between the index of the adenylic system phosphorylated state (ATP) : (ADP) (HPO2-4), the ratios (ATP) : (ADP) and (ATP : (ADP + AMP), on one hand, and the ratio (NAD+) : (NADH) in the cytoplasm, on the other one. The maximum value of the ratio (ATP) : (ADP) (HPO2-4) was observed on the 17th day of development and correlated with the maximum rate of gluconeogenesis. The ratio (NAD+) : (NADH) in the cytoplasm suffered no changes until hatching and decreased twice thereafter.  相似文献   

19.
Mouse fibroblastic L cells responded to exogenous ATP (0.2 mM) with a transient hyperpolarization due to increased membrane permeability to K+. By contrast, intracellular injection of ATP (up to about 3 mM) produced no noticeable effects on the membrane potential. The effects of a non-hydrolysable analogue of ATP (AMP-PNP) were similar to those of ATP. After successive applications of ATP, the cell membrane became virtually unresponsive (desensitized). Extracellular ADP was also effective, but AMP or adenosine was not. Antazoline suppressed the ATP response. Thus, exogenous ATP and ADP appear to stimulate P2-purinoceptors. Similar responses to ATP (or ADP) were also observed in human normal diploid fibroblasts (Flow 1000 line).  相似文献   

20.
Massive poly(ADP-ribose) formation by poly(ADP-ribose) polymerase-1 (PARP-1) triggers NAD depletion and cell death. These events have been invariantly related to cellular energy failure due to ATP shortage. The latter occurs because of both ATP consumption for NAD resynthesis and impairment of mitochondrial ATP formation caused by an increase of the AMP/ADP ratio. ATP depletion is therefore thought to be an inevitable consequence of NAD loss and a hallmark of PARP-1 activation. Here, we challenge this scenario by showing that PARP-1 hyperactivation in cells cultured in the absence of glucose (Glu cells) is followed by NAD depletion and an unexpected PARP-1 activity-dependent ATP increase. We found increased ADP content in resting Glu cells, a condition that counteracts the increase of the AMP/ADP ratio during hyperpoly(ADP-ribosyl)ation and preserves mitochondrial coupling. We also show that the increase of ATP in Glu cells is due to adenylate kinase activity, transforming AMP into ADP which, in turn, is converted into ATP by coupled mitochondria. Interestingly, PARP-1-dependent mitochondrial release of apoptosis-inducing factor (AIF) and cytochrome complex (Cyt c) is reduced in Glu cells, even though cell death eventually occurs. Overall, the present study identifies basal ADP content and adenylate kinase as key determinants of bioenergetics during PARP-1 hyperactivation and unequivocally demonstrates that ATP loss is not metabolically related to NAD depletion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号