首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhou  Ju  Imani  Saber  Shasaltaneh  Marzieh Dehghan  Liu  Shuguang  Lu  Tao  Fu  Junjiang 《Molecular biology reports》2022,49(3):1799-1816
Background

Nigella sativa (N. sativa) exhibits anti-inflammatory, antioxidant, antidiabetic, antimetastatic and antinociceptive effects and has been used to treat dozens of diseases. Thymoquinone (TQ) is an important and active component isolated from N. sativa seeds. Inhibition of cancer-associated activating PIK3CA mutations is a new prospective targeted therapy in personalized metastatic breast cancer (MBC). TQ is reported to be an effective inhibitor of the PI3K/Akt1 pathway in MBC. This study aimed to evaluate the in vitro antitumor effect of TQ in the context of two PIK3CA hotspot mutations, p. H1047R and p. H1047L.

Methods and results

Molecular dynamics, free energy landscapes and principal component analyses were also used to survey the mechanistic effects of the p. H1047R and p. H1047L mutations on the PI3K/Akt1 pathway. Our findings clearly confirmed that the p. H1047R and p. H1047L mutants could reduce the inhibitory effect of ΔNp63α on the kinase domain of PIK3CA, resulting in increased activity of PI3K downstream signals. Structurally, the partial disruption of the interaction between the ΔNp63α DNA binding domain and the PIK3CA kinase domain at residues 114–359 and 797–1068 destabilizes the conformation of the activation loop and modifies the PIK3CA/ΔNp63α complex. Alongside these structural changes, we found that TQ treatment resulted in high PI3K/Akt1 pathway inhibition in p. H1047R and p. H1047L-expressing cells versus wild-type cells.

Conclusions

These two PIK3CA hotspot mutations therefore not only contribute to tumor progression in patients with MBC but may also serve as targets for the development of novel small molecule therapeutic strategies.

  相似文献   

2.
Phosphatidylinositol 3-kinases (PI3Ks) are important regulators of signaling pathways. To determine whether PI3Ks are genetically altered in human cancers, we recently analyzed the sequences of the PI3K gene family and discovered that one member, the PIK3CA gene encoding the p110? catalytic subunit, was frequently mutated in cancers of the colon, breast, brain and lung. The majority of mutations clustered near two positions within the PI3K helical or catalytic domains and at least one hotspot mutation appeared to increase kinase activity. PIK3CA represents one of the most highly mutated oncogenes identified in human cancers and may be a useful diagnostic and therapeutic target.  相似文献   

3.
PIK3CA codes for the p110α isoform of class-IA PI 3-kinase and oncogenic mutations in the helical domain and kinase domain are common in several cancers. We studied the biochemical properties of a common helical domain mutant (E545K) and a common kinase domain mutant (H1047R). Both retain the ability to autophosphorylate Ser608 of p85α and are also inhibited by a range of PI 3-kinase inhibitors (Wortmannin, LY294002, PI-103 and PIK-75) to a similar extent as WT p110α. Both mutants display an increased Vmax but while a PDGF derived diphosphotyrosylpeptide caused an increase in Vmax for WT p85α/p110α it did not for the E545K variant and actually decreased Vmax for the H1047R variant. Further, the E545K mutant was activated by H-Ras whereas the H1047R mutant was not. Together these results suggest helical domain mutants are in a state mimicking activation by growth factors whereas kinase domain mutants mimic the state activated by H-Ras.  相似文献   

4.
The PIK3CA gene, encoding the p110alpha catalytic subunit of Class IA PI3Ks (phosphoinositide 3-kinases), is frequently mutated in many human tumours. The three most common tumour-derived alleles of p110alpha, H1047R, E542K and E545K, were shown to potently activate PI3K signalling in human epithelial cells. In the present study, we examine the biochemical activity of the recombinantly purified PI3K oncogenic mutants. The kinetic characterizations of the wt (wild-type) and the three 'hot spot' PI3K mutants show that the mutants all have approx. 2-fold increase in lipid kinase activities. Interestingly, the phosphorylated IRS-1 (insulin receptor substrate-1) protein shows activation of the lipid kinase activity for the wt and H1047R but not E542K and E545K PI3Kalpha, suggesting that these mutations represent different mechanisms of lipid kinase activation and hence transforming activity in cancer cells.  相似文献   

5.
Recent statistics describe breast cancer as the leading cause of death among women across the world with varied causes and reasons. Lifestyle, diet, genetic and environmental factors introduce their generous contributions towards breast cancer, among which genetic factors have lately become one of the most important aspects in understanding the mechanism. Although various genes have already been reported in causing breast cancer, PIK3CA stands second on the list. Mutations observed in this gene have the ability to trigger the different activities of the cell, thereby bypassing the regular cellular cycle. Among the mutations in PIK3CA, three hotspot mutations were commonly reported, one in the catalytic domain (position HIS1047) and other two in the helical domain (position GLU542 and GLU545). In the helical domain of PIK3CA, the lysine substitution at 542–545 positions was significantly studied in causing breast cancer. To compare the deleterious effect of these mutations, in silico prediction tools along with molecular dynamics simulations and molecular docking approach was initiated to analyse the change in binding landscape upon mutation. In this comparative analysis, we report that the mere existence of mutant E545K can trigger the function of the protein but may not be as harmful as H1047R. Among the two mutations E542K and E545K, the latter shows the most deleterious effect that correlates with the previous reported experimental studies. We assume the results observed in this combinatorial computational study might further pave a better way for providing better treatment procedures.  相似文献   

6.
7.
PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing human PIK3CA(H1047R). Notably, most PIK3CA(H1047R)-driven mammary tumors recurred after PIK3CA(H1047R) inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including focal amplification of Met or Myc (also known as c-Met and c-Myc, respectively). Whereas Met amplification led to tumor survival dependent on activation of endogenous PI3K, tumors with Myc amplification became independent of the PI3K pathway. Functional analyses showed that Myc contributed to oncogene independence and resistance to PI3K inhibition. Notably, PIK3CA mutations and c-MYC elevation co-occur in a substantial fraction of human breast tumors. Together, these data suggest that c-MYC elevation represents a potential mechanism by which tumors develop resistance to current PI3K-targeted therapies.  相似文献   

8.
The PI3K-Akt pathway is frequently upregulated in human tumors. Recently, somatic mutations of PIK3CA, encoding p110α catalytic subunit of Class IA PI3Ks, have been found in various cancers. The two most common types of p110α mutants, those in the helical and kinase domains, have been shown to be very potent in Akt activation and oncogenic transformation by several groups. Notably these common mutations may not enhance recruitment of p110α to the plasma membrane where its substrates are located. We have investigated the effect of membrane localization on common PIK3CA tumor mutants via myristoylation. In addition we have studied a third class of less frequent mutants in the p85-binding domain, in an attempt to gain insight into p85’s inhibitory effect on p110α. This article briefly reviews and extends the literature on mutant forms of p110α.  相似文献   

9.
10.
PIK3CA, the gene coding for the p110α subunit of phosphoinositide 3-kinase, is frequently mutated in a variety of human tumors including breast cancers. To better understand the role of mutant PIK3CA in the initiation and/or progression of breast cancer, we have generated mice with a conditional knock-in of the common activating mutation, Pik3ca(H1047R), into one allele of the endogenous gene in the mammary gland. These mice developed a ductal anaplasia and hyperplasia by 6 weeks of age characterized by multi-layering of the epithelial lining of the mammary ducts and expansion of the luminal progenitor (Lin(-); CD29(lo); CD24(+); CD61(+)) cell population. The Pik3ca(H1047R) expressing mice eventually develop mammary tumors with 100% penetrance but with a long latency (>12 months). This is significantly longer than has been reported for transgenic models where expression of the mutant Pik3ca is driven by an exogenous promoter. Histological analysis of the tumors formed revealed predominantly ERα-positive fibroadenomas, carcinosarcomas and sarcomas. In vitro induction of Pik3ca(H1047R) in immortalized mammary epithelial cells also resulted in tumor formation when injected into the mammary fat pad of immunodeficient recipient mice. This novel model, which reproduces the scenario of a heterozygous somatic mutation occurring in the endogenous PIK3CA gene, will thus be a valuable tool for investigating the role of Pik3ca(H1047R) mutation in mammary tumorigenesis both in vivo and in vitro.  相似文献   

11.
Mutations in PIK3CA, the gene encoding the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K) have been shown to transform human mammary epithelial cells (MECs). These mutations are present in all breast cancer subtypes, including basal-like breast cancer (BLBC). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified 72 protein expression changes in human basal-like MECs with knock-in E545K or H1047R PIK3CA mutations versus isogenic MECs with wild-type PIK3CA. Several of these were secreted proteins, cell surface receptors or ECM interacting molecules and were required for growth of PIK3CA mutant cells as well as adjacent cells with wild-type PIK3CA. The proteins identified by MS were enriched among human BLBC cell lines and pointed to a PI3K-dependent amphiregulin/EGFR/ERK signaling axis that is activated in BLBC. Proteins induced by PIK3CA mutations correlated with EGFR signaling and reduced relapse-free survival in BLBC. Treatment with EGFR inhibitors reduced growth of PIK3CA mutant BLBC cell lines and murine mammary tumors driven by a PIK3CA mutant transgene, all together suggesting that PIK3CA mutations promote tumor growth in part by inducing protein changes that activate EGFR.PIK3CA1, the gene encoding the p110α catalytic subunit of phosphatidylinositide-3 kinase (PI3K), is one of the two most frequently mutated genes in breast cancer. Approximately 80% of these mutations occur in two hot spots in the helical domain (E545K, E542K) and in the catalytic domain (H1047R). PIK3CA activating mutations occur in ∼40% of luminal and HER2-enriched breast cancer subtypes and ∼10% of basal-like breast cancer (BLBC) (1). In this last tumor subtype, mutations in PIK3CA are the most frequent activating kinase mutation. Thus, understanding of how PIK3CA mutations operate in BLBC is important for identifying therapeutic targets in this subtype of the disease, which lacks approved targeted therapies.To elucidate mechanisms by which mutant PIK3CA transforms MECs, we used immortalized, nontumorigenic MCF10A cells, which exhibit basal-like gene expression. Although MCF10A cells require growth factors for proliferation (2), heterozygous knock-in of E545K or H1047R PIK3CA mutation allows growth factor-independent proliferation (3). These knock-in PIK3CA mutant MECs provide a robust model in which to study the impact of these mutations without the effects of random insertion and overexpression associated with ectopic gene transduction. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of these cells identified 72 proteins concordantly altered by both PIK3CA mutations. A significant fraction of these were secreted proteins, cell surface receptors or ECM interacting molecules, suggesting PIK3CA mutations induce changes involving communication with the tumor microenvironment. This analysis identified a PI3K-induced amphiregulin (AREG)-EGFR-ERK signaling pathway that was required for growth of PIK3CA-mutant cells as well as adjacent PIK3CA-WT cells. In addition, these protein changes correlated with poor clinical outcome in BLBC. EGFR antagonists inhibited growth of PIK3CA mutant BLBC tumors, suggesting a potential therapeutic strategy for patients with this molecular subtype of breast cancer.  相似文献   

12.

Background

The PI3K-AKT pathway is frequently activated in breast cancer. PIK3CA mutations are most frequently found in the helical (exon 9) and kinase (exon 20) domains of this protein. The aim of the present study was to examine the role of different types of PIK3CA mutations in combination with molecular biomarkers related to PI3K-AKT signaling in patients with early breast cancer.

Methods

Tumor tissue samples from 1008 early breast cancer patients treated with adjuvant chemotherapy in two similar randomized trials of HeCOG were examined. Tumors were subtyped with immunohistochemistry (IHC) and FISH for ER, PgR, Ki67, HER2 and androgen receptor (AR). PIK3CA mutations were analyzed by Sanger sequencing (exon 20) and qPCR (exon 9) (Sanger/qPCR mutations). In 610 cases, next generation sequencing (NGS) PIK3CA mutation data were also available. PIK3CA mutations and PTEN protein expression (IHC) were analyzed in luminal tumors (ER and/or PgR positive), molecular apocrine carcinomas (MAC; ER/PgR negative / AR positive) and hormone receptor (ER/PgR/AR) negative tumors.

Results

PIK3CA mutations were detected in 235/1008 tumors (23%) with Sanger/qPCR and in 149/610 tumors (24%) with NGS. Concordance between the two methods was good with a Kappa coefficient of 0.76 (95% CI 0.69–0.82). Lobular histology, low tumor grade and luminal A tumors were associated with helical domain mutations (PIK3CAhel), while luminal B with kinase domain mutations (PIK3CAkin). The overall incidence of PIK3CA mutations was higher in luminal as compared to MAC and hormone receptor negative tumors (p = 0.004). Disease-free and overall survival did not significantly differ with respect to PIK3CA mutation presence and type. However, a statistically significant interaction between PIK3CA mutation status and PTEN low protein expression with regard to prognosis was identified.

Conclusions

The present study did not show any prognostic significance of specific PIK3CA mutations in a large group of predominantly lymph-node positive breast cancer women treated with adjuvant chemotherapy. Further analyses in larger cohorts are warranted to investigate possible differential effect of distinct PIK3CA mutations in small subgroups of patients.  相似文献   

13.
We examined 25 breast tumor samples for somatic mutations in exon 20 and exon 9 of PIK3CA gene in South Indian population. Genomic DNA was isolated and amplified for PIK3CA gene, followed by direct sequencing of purified polymerase chain reaction products. We identified PI3K3CA mutations in 5 of 25 (20%), including four of the mutations in p.H1047R and one in p.H1047L. Nucleotide base substitution A to G (c.3140A > G) and A to T (c.3140A > T) results in p.H1047R and p.H1047L mutation in exon 20 of PIK3CA gene. We did not observe any mutation in exon 9 of PIK3CA gene. Furthermore, we investigated the effect of mutations on protein structure and function by the combination of sequence and structure-based in silico prediction methods. This determined the underlying relationship between the mutation and its phenotypic effects. Next step, we complemented by molecular dynamics simulation analysis (30 ns) of native and mutant structures that measured the effect of mutation on protein structure. The obtained results support that the application of computational methods helps predict the biological significance of mutations.  相似文献   

14.
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently upregulated in cancer. PIK3CA, the gene coding for the catalytic subunit p110α of PI3K, is mutated in about 12% of all human cancers. Most of these mutants are single amino acid substitutions that map to three positions (hot spots) in the helical or kinase domains of the enzyme. The mutant proteins show gain of enzymatic function, constitutively activate AKT signaling and induce oncogenic transformation in vitro and in animal model systems. We have shown previously that hot-spot mutations in the helical domain and kinase domain of the avian p110α have different requirements for interaction with the regulatory subunit p85 and with RAS-GTP. Here, we have carried out a genetic and biochemical analysis of these "hot-spot" mutations in human p110α. The present studies add support to the proposal that helical and kinase domain mutations in p110α trigger a gain of function by different molecular mechanisms. The gain of function induced by helical domain mutations requires interaction with RAS-GTP. In contrast, the kinase domain mutation is active in the absence of RAS-GTP binding, but depends on the interaction with p85.  相似文献   

15.
PIK3CA, coding a catalytic subunit of PI3K p110α, is frequently mutated in cancer. In previous studies, p110α with hotspot mutations such as E545K and H1047R were shown to be gain-of-function mutations. However, quantitative evaluation of these mutants was not well established. Recently, a new method for measuring PI3K activity using homogeneous time-resolved fluorescence (HTRF) has been developed. Using this method, we constructed a quantitative evaluation system for PI3K activity. Serial dilutions of standard PIP3 were subjected to the PI3K-HTRF assay in order to establish a regression line for calibration. The recombinant FLAG-tagged p110α proteins were engineered together with a regulatory subunit p85α in human embryonic kidney 293T cells. Anti-FLAG-Ig immunoprecipitates were then subjected to the assay, which enabled us to quantitatively evaluate the activities of hotspot mutants of p110α. We believe this method will also be applicable to the evaluation of p110α having uncharacterized mutations found in cancer.  相似文献   

16.
Mutated genes are rarely common even in the same pathological type between cancer patients and as such, it has been very challenging to interpret genome sequencing data and difficult to predict clinical outcomes. PIK3 CA is one of a few genes whose mutations are relatively popular in tumors. For example, more than 46.6% of luminal-A breast cancer samples have PIK3 CA mutated, whereas only 35.5% of all breast cancer samples contain PIK3 CA mutations. To understand the function of PIK3 CA mutations in luminal A breast cancer, we applied our recentlyproposed Cancer Hallmark Network Framework to investigate the network motifs in the PIK3CA-mutated luminal A tumors. We found that more than 70% of the PIK3CA-mutated luminal A tumors contain a positive regulatory loop where a master regulator(PDGF-D), a second regulator(FLT1) and an output node(SHC1) work together. Importantly, we found the luminal A breast cancer patients harboring the PIK3 CA mutation and this positive regulatory loop in their tumors have significantly longer survival than those harboring PIK3 CA mutation only in their tumors. These findings suggest that the underlying molecular mechanism of PIK3 CA mutations in luminal A patients can participate in a positive regulatory loop, and furthermore the positive regulatory loop(PDGF-D/FLT1/SHC1) has a predictive power for the survival of the PIK3 CAmutated luminal A patients.  相似文献   

17.
Morrow CJ  Gray A  Dive C 《FEBS letters》2005,579(23):5123-5128
Recent studies have identified conserved missense mutations in PIK3CA, the gene encoding the catalytic phosphatidylinositol-3-kinase subunit p110alpha, in a variety of human cancers. Further investigation demonstrated that PIK3CA mutations lead to increased basal phosphatidylinositol-3-kinase activity, promoting cell growth and invasion [Samuels, Y., Diaz, L.A., Jr., Schmidt-Kittler, O., Cummins, J.M., Delong, L., Cheong, I., Rago, C., Huso, D.L., Lengauer, C., Kinzler, K.W., Vogelstein, B. and Velculescu, V.E. (2005) Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561-573]. A panel of commonly used colorectal cancer cell lines was screened for these PIK3CA mutations. Constitutive and IGF-1-stimulated phosphatidylinositol-3-kinase activity, signal response and duration were assessed. In the assays used no differences distinguished cells carrying PIK3CA mutations indicating that these mutations did not significantly alter growth factor stimulated or steady state phosphatidylinositol-3-kinase activity in normal cell culture conditions.  相似文献   

18.
Constitutive activation of the phosphatidylinositol-3-OH kinase (PI3K) and RAS signaling pathways are important events in tumor formation. This is illustrated by the frequent genetic alteration of several key players from these pathways in a wide variety of human cancers. Here, we report a detailed sequence analysis of the PTEN, PIK3CA, KRAS, HRAS, NRAS, and BRAF genes in a collection of 40 human breast cancer cell lines. We identified a surprisingly large proportion of cell lines with mutations in the PI3K or RAS pathways (54% and 25%, respectively), with mutants for each of the six genes. The PIK3CA, KRAS, and BRAF mutation spectra of the breast cancer cell lines were similar to those of colorectal cancers. Unlike in colorectal cancers, however, mutational activation of the PI3K pathway was mutually exclusive with mutational activation of the RAS pathway in all but 1 of 30 mutant breast cancer cell lines (P = 0.001). These results suggest that there is a fine distinction between the signaling activators and downstream effectors of the oncogenic PI3K and RAS pathways in breast epithelium and those in other tissues.  相似文献   

19.
The PIK3CA gene is one of the most frequently mutated oncogenes in human cancers. It encodes p110α, the catalytic subunit of phosphatidylinositol 3-kinase alpha (PI3Kα), which activates signaling cascades leading to cell proliferation, survival, and cell growth. The most frequent mutation in PIK3CA is H1047R, which results in enzymatic overactivation. Understanding how the H1047R mutation causes the enhanced activity of the protein in atomic detail is central to developing mutant-specific therapeutics for cancer. To this end, Surface Plasmon Resonance (SPR) experiments and Molecular Dynamics (MD) simulations were carried out for both wild-type (WT) and H1047R mutant proteins. An expanded positive charge distribution on the membrane binding regions of the mutant with respect to the WT protein is observed through MD simulations, which justifies the increased ability of the mutated protein variant to bind to membranes rich in anionic lipids in our SPR experiments. Our results further support an auto-inhibitory role of the C-terminal tail in the WT protein, which is abolished in the mutant protein due to loss of crucial intermolecular interactions. Moreover, Functional Mode Analysis reveals that the H1047R mutation alters the twisting motion of the N-lobe of the kinase domain with respect to the C-lobe and shifts the position of the conserved P-loop residues in the vicinity of the active site. These findings demonstrate the dynamical and structural differences of the two proteins in atomic detail and propose a mechanism of overactivation for the mutant protein. The results may be further utilized for the design of mutant-specific PI3Kα inhibitors that exploit the altered mutant conformation.  相似文献   

20.
The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号