首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteolytic activity of 0-12 day old eggs, miracidium and adult worm of Fasciola gigantica was assessed and proteases were partially purified by DEAE-Sepharose and CM-cellulose columns. Four forms of protease were separated, PIa, PIb, PIc and PII. Purifications were completed for PIc and PII using Sephacryl S-200 chromatography. A number of natural and synthetic proteins were tested as substrates for F. gigantica PIc and PII. The two proteases had moderate activity levels toward azoalbumin and casein compared to azocasein, while gelatin, hemoglobin, albumin and fibrin had very low affinity toward the two enzymes. Amidolytic substrates are more specific to protease activity. PIc had higher affinity toward BAPNA-HCl (N-benzoyl-arginine-p-nitroanilide-HCl) and BTPNA-HCl (N-benzoyl-tyrosine-p-nitroanilide-HCl) at pH 8.0 indicating that the enzyme was a serine protease. However, PII had higher affinity toward BAPNA at pH 6.5 in the presence of sulfhydryl groups (beta-mercaptoethanol) indicating that the enzyme was a cysteine protease. The effect of specific protease inhibitors on these enzymes was studied. The results confirmed that proteases PIc and PII could be serine and cysteine proteases, respectively. The molecular weights of F. gigantica PIc and PII were 60,000 and 25,000, respectively. F. gigantica PIc and PII had pH optima at 7.5 and 5.5 and K(M) of 2 and 5 mg azocasein/mL, respectively. For amidolytic substrates, PIc had K(M) of 0.3 mM BAPNA/mL and 0.5 mM BTPNA/mL at pH 8.0 and PII had K(M) of 0.6 mM BAPNA/mL at pH 6.5 with reducing agent. F. gigantica PIc and PII had the same optimum temperature at 50 degrees C and were stable up to 40 degrees C. All examined metal cations tested had inhibitory effects toward the two enzymes. From substrate specificity and protease inhibitor studies, PIc and PII could be designated as serine PIc and cysteine PII, respectively.  相似文献   

2.
Peptidases are important because they play a central role in pharmaceutical, food, environmental, and other industrial processes. A serine peptidase from Aspergillus terreus was isolated after two chromatography steps that showed a yield of 15.5%. Its molecular mass was determined to be 43 kD, by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This peptidase was active between pH 5.0 to 8.0 and had maximum activity at pH 7.0, at 45°C. When exposited with 1 M of urea, the enzyme maintained 100% activity and used azocasein as substrate. The N-terminal (first 15 residues) showed 33% identity with the serine peptidase of Aspergillus clavatus ES1. The kinetics assays showed that subsite S2 did not bind polar basic amino acids (His and Arg) nonpolar acidic amino acids (Asp and Glu). The subsite S1 showed higher catalytic efficiency than the S2 and S3 subsites.  相似文献   

3.
Cathepsin L-like proteinase was purified approximately 1708-fold with 40% activity yield to an apparent electrophoretic homogeneity from goat brain by homogenization, acid-autolysis at pH 4.2, 30-80% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography and ion-exchange chromatography on CM-Sephadex C-50 at pH 5.0 and 5.6. The molecular weight of proteinase was found to be approximately 65,000 Da, by gel-filtration chromatography. The pH optima were 5.9 and 4.5 for the hydrolysis of Z-Phe-Arg-4mbetaNA (benzyloxycarbonyl-L-phenylalanine-L-arginine-4-methoxy-beta-naphthylamide) and azocasein, respectively. Of the synthetic chromogenic substrates tested, Z-Phe-Arg-4mbetaNA was hydrolyzed maximally by the enzyme (Km value for hydrolysis was 0.06 mM), followed by Z-Val-Lys-Lys-Arg-4mbetaNA, Z-Phe-Val-Arg-4mbetaNA, Z-Arg-Arg-4mbetaNA and Z-Ala-Arg-Arg-4mbetaNA. The proteinase was activated maximally by glutathione in conjunction with EDTA, followed by cysteine, dithioerythritol, thioglycolic acid, dithiothreitol and beta-mercaptoethanol. It was strongly inhibited by p-hydroxymercuribenzenesulphonic acid, iodoacetic acid, iodoacetamide and microbial peptide inhibitors, leupeptin and antipain. Leupeptin inhibited the enzyme competitively with Ki value 44 x 10(-9) M. The enzyme was strongly inhibited by 4 M urea. Metal ions, Hg(2+), Ca(2+), Cu(2+), Li(2+), K(+), Cd(2+), Ni(2+), Ba(2+), Mn(2+), Co(2+) and Sn(2+) also inhibited the activity of the enzyme. The enzyme was stable between pH 4.0-6.0 and up to 40 degrees C. The optimum temperature for the hydrolysis of Z-Phe-Arg-4mbetaNA was approximately 50-55 degrees C with an activation energy Ea of approximately 6.34 KCal mole(-1).  相似文献   

4.
Enzymes, especially proteases, have become an important and indispensable part of the processes used by the modern food and feed industry to produce a large and diversified range of products for human and animal consumption. A cysteine protease, used extensively in the food industry, was purified from germinated wheat Triticum aestivum (cv. Giza 164) grains through a simple reproducible method consisting of extraction, ion exchange chromatography and gel filtration. The molecular weight of the enzyme was estimated to be 61000+/-1200-62000+/-1500 by SDS-PAGE and gel filtration. The cysteine protease had an isoelectric point and pH optimum at 4.4 and 4.0, respectively. The enzyme exhibited more activity toward azocasein than the other examined substrates with K(m) 2.8+/-0.15 mg azocasein/ml. In addition, it had a temperature optimum of 50 degrees C and based on a heat stability study 55% of its initial activity remained after preincubation of the enzyme at 50 degrees C for 30 min prior to substrate addition. All the examined metal cations inhibited the enzyme except Co(2+), Mg(2+), Mn(2+) and Li(+). The proteolytic activity of the enzyme was inhibited by thiol-specific inhibitors, whereas iodoacetate and p-hydroxymercuribenzoate caused a competitive inhibition with Ki values 6+/-0.3 mM and 21+/-1.2 microM, respectively. Soybean trypsin inhibitor had no effect on the enzyme. The enzyme activity remained almost constant for 150 days of storage at -20 degrees C. The properties of this enzyme, temperature and pH optima, substrate specificity, stability and sensitivity to inhibitors or activators, meet the prerequisites needed for food industries.  相似文献   

5.
The complete amino acid sequence was determined for the Cu,Zn superoxide dismutase from the shark Prionace glauca. The active site region shows the substitution of an Arg for Lys at position 134, which is important for electrostatic facilitation of the diffusion of O2- to the catalytically active copper. This change may be related to observed alterations of electrostatic parameters of the enzyme (pK of the pH dependence of the enzyme activity, rate of inactivation by H2O2), although it preserves a high efficiency of dismutation at neutral pH.  相似文献   

6.
Goto Y  Hattori A  Ishii Y  Tsujimoto M 《FEBS letters》2006,580(7):1833-1838
The adipocyte-derived leucine aminopeptidase (A-LAP)/ER aminopeptidase-1 is a multi-functional enzyme belonging to the M1 family of aminopeptidases. It was reported that the polymorphism Lys528Arg in the human A-LAP gene is associated with essential hypertension. In this study, the role of Lys528 in the enzymatic activity of human A-LAP was examined by site-directed mutagenesis. Among non-synonymous polymorphisms tested, only Lys528Arg reduced enzymatic activity. The replacement of Lys528 with various amino acids including Ala, Met, His and Arg caused a significant decrease in the enzymatic activity. Molecular modeling of the enzyme suggested that Lys528 is located near the entrance of the substrate pocket. These results suggest that Lys528 is important for maximal activity of A-LAP by maintaining the appropriate structure of the substrate pocket of the enzyme. The reduced enzymatic activity of A-LAP may cause high blood pressure and the observed association between the polymorphism and hypertension.  相似文献   

7.
In this work we report the isolation, purification and characterization of a new protease from latex of Asclepias curassavica L. Crude extract (CE) was obtained by gathering latex on 0.1 M citric-phosphate buffer with EDTA and cysteine with subsequent ultracentrifugation. Proteolytic assays were made on casein or azocasein as substrates. Caseinolytic activity was completely inhibited by E-64. Stability at different temperatures, optimum pH and ionic strength were evaluated by measuring the residual caseinolytic activity at different times after the incubation. CE showed the highest caseinolytic activity at pH 8.5 in the presence of 12 mM cysteine. CE was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by SDS-PAGE, were isolated. The major purified protease (asclepain cI) showed a molecular mass of 23.2 kDa by mass spectrometry and a pI higher than 9.3. The N-terminal sequence showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-aminoacid-p-nitrophenyl esters, the enzyme showed higher preference for the glutamine derivative. Determinations of kinetic parameter (km and Kcat) were performed with PFLNA.  相似文献   

8.
Human non-pancreatic secretory phospholipase A2 (hnpsPLA2) is a group IIA phospholipase A2 which plays an important role in the innate immune response. This enzyme was found to exhibit bactericidal activity toward Gram-positive bacteria, but not Gram-negative ones. Though native hnpsPLA2 is active over a broad pH range, it is only highly active at alkaline conditions with the optimum activity pH of about 8.5. In order to make it highly active at neutral pH, we have obtained two hnpsPLA2 mutants, Glu89Lys and Arg100Glu that work better at neutral pH in a previous study. In the present study, we tested the bactericidal effects of the native hnpsPLA2 and the two mutants. Both native hnpsPLA2 and the two mutants exhibit bactericidal activity toward Gram-positive bacteria. Furthermore, they can also kill Escherichia coli, a Gram-negative bacterium. The two mutants showed better bactericidal activity for E. coli at neutral pH than the native enzyme, which is consistent with the enzyme activities. As hnpsPLA2 is highly stable and biocompatible, it may provide a promising therapy for bacteria infection treatment or other bactericidal applications.  相似文献   

9.
A cysteine protease (trypanopain-Tc) with cathepsin-L-like properties has been purified from Trypanosoma congolense. The enzyme has an apparent molecular mass of 31-32 kDa by SDS/PAGE and 66 kDa by gel chromatography. It has a pI 7.4 and a high affinity for concanavalin A. Trypanopain-Tc catalyses the limited proteolysis of a variety of protein substrates such as fibrinogen, serum albumin and trypanosome variant-surface glycoprotein. It has minimal or no activity against casein or elastin. A variety of peptidyl amidomethylcoumarins and peptidyl diazomethanes were used to test the specificity of trypanopain-Tc. The better substrates had Arg or Lys in P1 and hydrophobic amino acids in P2 and P3. The best substrate found for trypanopain-Tc was Z-Phe-Arg-NHMec (Z, benzyloxycarbonyl; NHMec, 7-amido-4-methylcoumarin). The kinetic constants for the hydrolysis of Z-Phe-Arg-NHMec were kcat = 17.4 s-1, Km = 4.4 microM, kcat/Km = 4.0 microM-1.s-1, which are very similar to those of cathepsin L with this substrate. The specific substrates for cathepsin B (Z-Arg-Arg-NHMec) and cathepsin H (Arg-NHMec) were not hydrolysed by trypanopain-Tc under the conditions tested. The pH optimum of trypanopain-Tc against Z-Phe-Arg-NHMec was pH 6.0 but it showed a broad peak of activity extending well into the alkaline region. The enzyme was activated by low-molecular-mass thiol compounds and inhibited by cystatin, L-trans-epoxysuccinyl-4-guanidinobutane (E-64) and a variety of peptidyl diazomethanes. The most effective diazomethane inhibitors (Z-Leu-Leu-Met-CHN2, Z-Leu-Met-CHN2 and Z-Leu-Lys-CHN2, were inhibitory at nanomolar concentrations and were trypanocidal in vitro after 24-48 h incubation in greater than or equal to 20 microM [inhibitor]. However, it is not clear whether the trypanocidal activity of these inhibitors is a consequence of the inhibition of trypanopains or of some other essential proteolytic activities within the parasites.  相似文献   

10.
Monomeric sarcosine oxidase (MSOX) contains covalently bound FAD and catalyzes the oxidative demethylation of sarcosine ( N-methylglycine). The side chain of Arg49 is in van der Waals contact with the si face of the flavin ring; sarcosine binds just above the re face. Covalent flavin attachment requires a basic residue (Arg or Lys) at position 49. Although flavinylation is scarcely affected, mutation of Arg49 to Lys causes a 40-fold decrease in k cat and a 150-fold decrease in k cat/ K m sarcosine. The overall structure of the Arg49Lys mutant is very similar to wild-type MSOX; the side chain of Lys49 in the mutant is nearly congruent to that of Arg49 in the wild-type enzyme. The Arg49Lys mutant exhibits several features consistent with a less electropositive active site: (1) Charge transfer bands observed for mutant enzyme complexes with competitive inhibitors absorb at higher energy than the corresponding wild-type complexes. (2) The p K a for ionization at N(3)H of FAD is more than two pH units higher in the mutant than in wild-type MSOX. (3) The reduction potential of the oxidized/radical couple in the mutant is 100 mV lower than in the wild-type enzyme. The lower reduction potential is likely to be a major cause of the reduced catalytic activity of the mutant. Electrostatic interactions with Arg49 play an important role in catalysis and covalent flavinylation. A context-sensitive model for the electrostatic impact of an arginine to lysine mutation can account for the dramatically different consequences of the Arg49Lys mutation on MSOX catalysis and holoenzyme biosysnthesis.  相似文献   

11.
An extracellular proteinase from Thermus strain Rt41A was immobilized to controlled pore glass (CPG) beads. The properties of the free and CPG-immobilized enzymes were compared using both a large (azocasein) and a small (peptidase) substrate. The specific activity of the immobilized proteinase was 5284 azoU/mg with azocasein and 144 sucU/mg for SucAAPFpNA. The percentage recovery of enzyme activity was unaffected by pore size when it was immobilized at a fixed level of activity/g of beads, whereas it increased with increasing pore size when added at a fixed level/m(2) of support. Saturation of the CPG beads was observed at 540 azoU/m(2) of 105-nm beads. Lower levels (50 azoU/m(2) of 50-nm beads) were used in characterization experiments. The pH optimum of the immobilized Rt41A proteinase was 8.0 for azocasein and 9.5 for SucAAPFpNA, compared with the free proteinase which was 10.5 for both substrates. The immobilized enzyme retained 65% of its maximum activity against azocasein at pH 12, whereas the free proteinase retained less than 10% under the same conditions. Stability at 80 degrees C increased on immobilization at all pH values between 5 and 11, the greatest increase in half-life being approximately 12-fold at pH 7.0. Temperature-activity profiles for both the free and immobilized enzymes were similar for both substrates. The stability of the immobilized proteinase, however, was higher than that of the free enzyme in the absence and presence of CaCl(2). Overall, the results show that low levels of calcium (10 muM) protect against thermal denaturation, but that high calcium or immobilization are required to protect against autolysis. (c) 1994 John Wiley & Sons, Inc.  相似文献   

12.
A metallo-endoproteinase was purified from mouse kidney. The enzyme was solubilized from the 100 000 g sediment of kidney homogenates with toluene and trypsin, and further purified by fractionation with (NH4)2SO4. DEAE-cellulose chromatography and gel filtration. The molecular weight of the metalloproteinase was estimated by gel filtration on Sepharose 6B to be 270 000--320 000. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in the presence of 2-mercaptoethanol, a single major protein with a mol.wt. of 81 000 was observed. Thus the active enzyme is an oligomer, probably a tetramer. It is a glycoprotein and has an apparent isoelectric point of 4.3. Kidney homogenates and purified preparations of the metalloproteinase degraded azocasein optimally at pH 9.5 and at I 0.15--0.2. The activity was not affected by inhibitors of serine proteinases (di-isopropyl phosphorofluoridate, phenylmethanesulphonyl fluoride), cysteine proteinases (4-hydroxymercuribenzoate, iodoacetate), aspartic proteinases (pepstatin) or several other proteinase inhibitors from actinomycetes (leupeptin, antipain and phosphoramidon). Inhibition of the enzyme was observed with metal chelators (EDTA, EGTA, 1,10-phenanthroline), and thiol compounds (cysteine, glutathione, dithioerythritol, 2-mercaptoethanol). The metalloproteinase degraded azocasein, azocoll, casein, haemoglobulin and aldolase, but showed little or no activity against the synthetic substrates benzoylarginine 2-naphthylamide, benzoylglycylarginine, benzyloxycarbonylglutamyltyrosine or acetylphenylalanyl 2-naphthyl ester. This metalloproteinase from mouse kidney appears to be distinct from previously described kidney proteinases.  相似文献   

13.
14.
This paper presents the cloning and biochemical characterisation of the cysteine protease Tr-cp 14 from white clover (Trifolium repens). The predicted amino acid sequence of Tr-cp 14 is 71%, 74% and 74% identical to the cysteine proteases XCP1 and XCP2 from Arabidopsis thaliana, and p48h-17 from Zinnia elegans, respectively. These cysteine proteases have previously been shown to be involved in programmed cell death during tracheary element differentiation. The precursor polypeptide of Tr-cp 14 was expressed in Escherichia coli, purified from inclusion bodies and refolded. The precursor polypeptide could be processed to its active mature form autocatalytically at pH 5.0 and had a requirement for 20 mM l-cysteine for optimal activity. Mature Tr-cp 14 showed a preference for synthetic aminomethylcoumarin substrates with either Leu or Phe in the P2 position when tested with Arg in P1. A substrate with Arg in both the P1 and P2 position was not accepted as substrate.  相似文献   

15.
Though OmpT has been reported to mainly cleave the peptide bond between consecutive basic amino acids, we identified more precise substrate specificity by using a series of modified substrates, termed PRX fusion proteins, consisting of 184 residues. The cleavage site of the substrate PRR was Arg140-Arg141 and the modified substrates PRX substituted all 19 natural amino acids at the P1' site instead of Arg141. OmpT under denaturing conditions (in the presence of 4 M urea) cleaved not only between two consecutive basic amino acids but also at the carboxyl side of Arg140 except for the Arg140-Asp141, -Glu141, and -Pro141 pairs. In addition to Arg140 at the P1 site, similar results were obtained when Lys140 was substituted into the P1 site. In the absence of urea, an aspartic acid residue at the P1' site was unfavorable for OmpT cleavage of synthetic decapeptides, the enzyme showed a preference for a dibasic site.  相似文献   

16.
The ornithine-urea cycle has been investigated in Fasciola gigantica. Agrinase had very high activity compared to the other enzymes. Carbamoyl phosphate synthetase and ornithine carbamoyltransferase had very low activity. A moderate enzymatic activity was recorded for argininosuccinate synthetase and argininosuccinate lyase. The low levels of F. gigantica urea cycle enzymes except to the arginase suggest the urea cycle is operative but its role is of a minor important. The high level of arginase activity may benefit for the hydrolysis of the exogenous arginine to ornithine and urea. Two arginases Arg I and Arg II were separated by DEAE-Sepharose column. Further purification was restricted to Arg II with highest activity. The molecular weight of Arg II, as determined by gel filtration and SDS-PAGE, was 92,000. The enzyme was capable to hydrolyze l-arginine and to less extent l-canavanine at arginase:canavanase ratio (>10). The enzyme exhibited a maximal activity at pH 9.5 and Km of 6 mM. The optimum temperature of F. gigantica Arg II was 40 degrees C and the enzyme was stable up to 30 degrees C and retained 80% of its activity after incubation at 40 degrees C for 15 min and lost all of its activity at 50 degrees C. The order of effectiveness of amino acids as inhibitors of enzyme was found to be lysine>isoleucine>ornithine>valine>leucine>proline with 67%, 43%, 31%, 25%, 23% and 15% inhibition, respectively. The enzyme was activated with Mn2+, where the other metals Fe2+, Ca2+, Hg2+, Ni2+, Co2+ and Mg2+ had inhibitory effects.  相似文献   

17.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

18.
A calcium-activated neutral protease was purified from Japanese monkey brain by ammonium sulfate fractionation and sequential column chromatographies monitored by assay of caseinolytic activity. The purified enzyme gave a single protein band on non-denaturing polyacrylamide gel electrophoresis, and consisted of two subunits with molecular weights of 74,000 and 20,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme required millimolar order calcium ions for activation, and was optimally active at pH 7.5-8.0. Upon incubation with various neuropeptides as substrates, the enzyme preferentially cleaved the peptide bonds with Arg, Lys, or Tyr at the P1 position and an amino acid residue with a bulky aliphatic side chain, such as Leu, Val, or Ile, at the P2 position. The hydrolytic activity toward neuropeptides as well as casein was strongly inhibited by various thiol protease inhibitors. These results suggested that the brain calcium-activated neutral protease may participate in the degradation of neuropeptides in vivo.  相似文献   

19.
Laccase produced by nitrogen-limited culture of Coriolus hirsutus was purified to electrophoretic homogeneity (133-fold) with an overall yield of 40%. The molecular mass of the enzyme was determined as 82 kDa by SDS-PAGE and 80 kDa using gel filtration. It had a pI of 3.50. With ferulic acid and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) as the substrate, the enzyme had optimal activity at pH 4.0 and 2.5, respectively. The enzyme was stable in the range pH 5.5 to 7.0 at 30 °C for 1 h. The enzyme was optimally active at 70 °C and it lost all activity within 15 min at 80 °C. The apparent Km value of enzyme toward ABTS was 67 °M and had highest affinity toward sinapinic acid. The enzyme was totally inhibited by 0.01 mM cysteine.  相似文献   

20.
The method of Smith and Hartman [J. Biol. Chem., 263, 4921-4925 (1988)] for introducing the non-natural lysine analog, S-(2-aminoethyl)cysteine, into specific sites in proteins by alkylation of a genetically introduced cysteine with 2-bromoethylamine has been generalized to be applicable to proteins containing one or more endogenous cysteines. The target cysteine residue introduced at the active site of aspartate aminotransferase is protected by bound cofactor. The enzyme is partially unfolded in low concentrations of urea, and the non-active site cysteine residues derivatized by a reversible thiol protecting reagent. The active site cysteine is then exposed and alkylated in 6 M urea. Enzyme activity is regenerated by removal of the thiol protecting groups and refolding of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号