首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Stemmer  T Akera  T M Brody  E Hosoya 《Life sciences》1986,39(16):1411-1416
Berberine has been shown to increase developed tension in cardiac muscle but its derivatives have been reported to inhibit the catalytic subunit of adenylate cyclase. In the present study, the cardiac actions of the most potent derivative, 13-propylberberine, were examined. It produced a transient increase followed by a sustained decrease in developed tension in paced left atrial muscle preparations isolated from guinea-pig heart. In the presence of 13-propylberberine, isoproterenol caused only a transient increase in developed tension; marked desensitization to the positive inotropic effect of isoproterenol occurred within 20 min. After washout of isoproterenol and an additional 15-min incubation in the presence of 13-propylberberine, the muscle lost its sensitivity to isoproterenol. Moreover, the positive inotropic effect of ouabain or effects of decrease or increase in extracellular Ca2+ concentration on the force of muscle contraction were markedly attenuated. Isoproterenol-induced elevation of tissue cyclic AMP concentration was inhibited by 13-propylberberine; however, 13-propylberberine did not alter the basal cyclic AMP concentration and its effects on inotropic actions of ouabain or extracellular Ca2+ appear unrelated to tissue cyclic AMP concentration.  相似文献   

2.
Positive inotropic effects of strophanthidin were compared with those of isoproterenol, BAY K 8644, grayanotoxin, veratridine, and monensin in electrically stimulated left atrial muscle preparations of guinea pig heart under conditions in which the calcium pool, playing a primary role in contractile activation, was altered. In concentrations that caused similar degrees of increase in developed tension under 1 Hz stimulation, grayanotoxin and strophanthidin caused a relatively large increase in potentiated postrest contraction compared with that caused by isoproterenol, whereas the effect of BAY K 8644 on the postrest contraction was the smallest. The effect of high concentrations of grayanotoxin or strophanthidin, however, resembled that of isoproterenol. The sensitivity of the isolated heart muscle to these agents was compared under conditions in which utilization of various calcium pools contributing to contractile activation was suppressed. Mn2+, which reduces contribution of very superficial Ca2+, reduced sensitivity of heart muscle to the positive inotropic effect of isoproterenol and enhanced the inotropic effect of monensin or veratridine. Verapamil, nifedipine, diltiazem, or ryanodine did not have marked effects on the positive inotropic action of Ca2+, monensin, veratridine, or strophanthidin. These results suggest that the positive inotropic actions of veratridine, grayanotoxin, and strophanthidin share a common mechanism and that low concentrations of strophanthidin may increase loading of Ca2+ pool, which plays an important role in potentiated postrest contraction.  相似文献   

3.
The effects of acetylcholine chloride and isoproterenol on myocardiial cyclic GMP, cyclic AMP and on isometric tension were studied in isolated electrically driven rabbit atria. Acetylcholine (0.5 muM) produced a significant decrease in isometric force that was associated with a significant elevation in atrial cyclic GMP. Cyclic AMP was significantly lowered at 15 seconds after the addition of acetylcholine, but was only slightly decreased at earlier time periods. Both the negative inotropic action and increase in cyclic GMP after addition of acetylcholine were blocked by atropine. Isoproterenol (0.1 muM) produced a significant increase in isometric tension that was associated with a significant elevation in atrial cyclic AMP levels, whereas cyclic GMP levels were not changed. These effects were blocked by practolol. The increases in atrial cyclic GMP and cyclic AMP following addition of acetylcholine and isoproterenol, respectively, preceded the changes in isometric tension in response to these agents. These data support the hypothesis that changes in intracellular levels of cyclic AMP and cyclic GMP may mediate the positive and negative inotropic effects of adrenergic and cholinergic agents.  相似文献   

4.
It has been suggested that increases in cyclic GMP levels are responsible for the negative inotropic effects of acetylcholine in the heart. This hypothesis was tested by monitoring the effects of acetylcholine and sodium nitroprusside on tension and cyclic nucleotide levels in strips of cat atrial appendage. Sodium nitroprusside markedly increased atrial cyclic GMP levels but did not decrease the twitch tension developed by the atrial strips. Low concentrations of acetylcholine, on the other hand, decreased twitch tension without increasing myocardial cyclic GMP levels. No significant change in cyclic AMP levels was observed in any of these experiments. These results are not consistent with the proposed role for cyclic GMP as the mediator of the negative inotropic effects of acetylcholine.  相似文献   

5.
The muscarinic agonist carbachol has previously been shown to reverse positive inotropic responses of rabbit left atrial strips to equiactive doses of the beta-adrenoceptor agonist isoproterenol and to the alpha-adrenoceptor agonist phenylephrine. Responses to phenylephrine were measured in the presence of the beta-blocker timolol. However, carbachol was not able to reverse the increase in tension produced by elevating the extracellular Ca2+ concentration. To gain more information about the nature of the functional interaction of carbachol with alpha- and beta-receptor stimulants in left atria, the interaction of carbachol with these agonists, as well as with elevated Ca2+ and the Ca2+ activator compound BAY K 8644, was compared with that of the Ca2+ antagonists D-600 and nifedipine. The results demonstrate that the Ca2+ antagonists exhibit a selectivity similar to that of carbachol, in that responses to both isoproterenol and phenylephrine plus timolol were blocked by low concentrations of D-600 and nifedipine, which had no effect on positive inotropic responses to elevated Ca2+. Higher concentrations of these antagonists shifted the Ca2+ dose-response curve to the right. In addition, although phenylephrine and BAY K 8644 increased tension to a similar extent, responses to phenylephrine were more sensitive than responses to BAY K 8644 to inhibition by both carbachol and D-600. These similarities between the effects of low concentrations of D-600 and nifedipine and those of carbachol are consistent with the hypothesis that carbachol antagonizes responses to alpha- and beta-receptor stimulation in left atria primarily by blocking increases in Ca2+ influx produced by these agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A myothermal technique was used to measure initial heat and tension independent heat from isometrically contracting papillary muscles taken from the right ventricle of rabbits. Tension independent heat produced by the muscle at Lo was isolated with a 2,3-butanedione monoxime (diacetyl monoxime)--hyperosmotic Krebs solution. The effects of the inotropic drugs isoproterenol (1 X 10(-7) M), UDCG 115 (2 X 10(-4) M), and caffeine (2 X 10(-3) M) on heat and mechanical output were measured. We tested the hypothesis that these drugs alter peak twitch tension by increasing the total amount of Ca2+ cycled during the twitch, assuming that net tension independent heat is proportional to total Ca2+ cycled. The hypothesis was rejected for each drug as the positive inotropic effects of isoproterenol and UDCG 115 on twitch tension were not accompanied by increases in net tension independent heat. Net tension independent heat was actually depressed by UDCG 115. The negative inotropic effect of caffeine on twitch tension was accompanied by an increase in tension independent heat at times between the end of mechanical relaxation and the next stimulus. Possible mechanisms to account for these results are discussed.  相似文献   

7.
In atrial muscle, acetylcholine (ACh) decreases the slow inward current (Isi) and increases the time-independent outward K+ current. However, in ventricular muscle, ACh produces a marked negative inotropic effect only in the presence of positive inotropic agents that elevate cyclic adenosine monophosphate (AMP). A two-microelectrode voltage-clamp method was used on cultured reaggregates of cells from 16--20-d-old embryonic chick ventricles to determine the effects of ACh on Isi and outward current during beta-adrenergic stimulation. Only double penetrations displaying low-resistance coupling were voltage-clamped. Cultured reaggregates are advantageous because their small size (50-- 250 microns) permits better control of membrane potential and adequate space clamp. Tetrodotoxin (10(-6) M) and a holding potential of --50 to --40 mV were used to eliminate the fast Na+ current. Depolarizing voltage steps above --40 mV caused a slow inward current to flow that was sensitive to changes in [Ca]o and was depressed by verapamil (10(- 6) M). Maximal Isi was obtained at --10 mV and the reversal potential was about +25 mV. Isoproterenol (10(-6) M) increased Isi at all clamp potentials. Subsequent addition of ACh (10(-6) M) rapidly reduced Isi to control values (before isoproterenol) without a significant effect on the net outward current measured at 300 ms. The effects of ACh were reversed by muscarinic blockade with atropine (5 X 10(-6) M). We conclude that the anti-adrenergic effects of ACh in ventricular muscle are mediated by a reduction in Ca2+ influx during excitation.  相似文献   

8.
The effects of short term stimulation of beta-adrenergic receptors and elevations in intracellular cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle cells in vitro has been studied using both the 45Ca2+ flux technique and [3H] nitrendipine-binding experiments. Isoproterenol increased the nitrendipine-sensitive 45Ca2+ influx under depolarizing conditions. The effects of isoproterenol were additive to those of depolarization and were antagonized by alprenolol. Half-maximal inhibition of 45Ca2+ influx induced both by depolarization and by isoproterenol occurred at a nitrendipine concentration of 1 nM. Treatments that resulted in an increased level of intracellular cyclic AMP, such as treatment with 1-methyl-3-isobutylxanthine, theophylline, dibutyryl cyclic AMP, or 8-bromocyclic AMP also resulted in an increased rate of 45Ca2+ entry via nitrendipine-sensitive Ca2+ channel. In contrast, long term treatment of myotubes in culture with isoproterenol and other compounds that increased intracellular cyclic AMP led to a large increase in the number of nitrendipine receptors. This increase was accompanied by a 4-10-fold decrease in the affinity of the receptors for nitrendipine. Alprenolol inhibited the long term effects of isoproterenol. In vivo treatment of 7-day-old chicks with reserpine and alprenolol produced a decrease in the number of skeletal muscle nitrendipine receptors. This decrease in receptor number was accompanied by an increase in the affinity of nitrendipine for its receptor by a factor of 4 to 5. These effects on the nitrendipine receptor were prevented by simultaneous injection of isoproterenol. The results are discussed in relation to the role of beta-adrenergic receptors and intracellular cyclic AMP in the regulation of skeletal muscle Ca2+ channels.  相似文献   

9.
The effects of isoproterenol and forskolin on tension, cyclic AMP levels, and cyclic AMP dependent protein kinase activity were compared in helical strips of bovine coronary artery. Elevation of cyclic AMP and activation of the protein kinase appeared to be well correlated with relaxation of potassium-contracted arteries by isoproterenol. Forskolin, at 1 microM or higher concentrations, also markedly elevated cyclic AMP levels, activated the kinase, and relaxed the arteries. However, a lower concentration of forskolin (0.1 microM) caused significant increases in both cyclic AMP levels and cyclic AMP dependent protein kinase activity, but did not relax the muscles. Relaxation caused by isoproterenol was accompanied by an apparent translocation of cyclic AMP dependent protein kinase activity from the soluble to the particulate fraction in these preparations. A similar shift in the distribution of the kinase was caused by various concentrations of forskolin, irrespective of whether the arteries were relaxed or not. In contrast to previous results in other tissues, low concentrations of forskolin (less than or equal to 1 microM), which themselves markedly elevated cyclic AMP levels in the arteries, did not potentiate the effects of isoproterenol on cyclic AMP levels or tension in these preparations. These results suggest that either cyclic AMP is not solely responsible for the relaxation caused by these agents, or some form of functional compartmentalization of cyclic AMP and cyclic AMP dependent protein kinase exists in this tissue.  相似文献   

10.
Cholera toxin (1–10 μg/ml) had a biphasic inotropic action on the isolated canine ventricular muscle: it produced a transient negative and a long lasting positive inotropic effect. The negative effect reached a maximum 43 + 2 min (n = 12) after administration of the toxin, while it took 3–5 hrs for the positive effect to reach a steady level. The positive inotropic effect of cholera toxin was accompanied by a prominent abbreviation of the time to peak tension and the relaxation time of individual contractions. The level of adenosine 3′,5′-cyclic monophosphate (cyclic AMP) of the tissue was elevated by cholera toxin in a time- and concentration-dependent manner. Carbachol (1 μmol/l) administered 3 or 5 hrs after the administration of cholera toxin (10 μg/ml) reversed the increase in force of contraction and the elevation of cyclic AMP levels induced by cholera toxin. These results indicate that cholera toxin exerts a cyclic AMP-dependent positive inotropic effect and a negative inotropic effect which is not related to cyclic AMP levels in canine ventricular myocardium.  相似文献   

11.
The present study investigated the effects of mibefradil, a novel T-type channel blocker, on ventricular function and intracellular Ca(2+) handling in normal and hypertrophied rat myocardium. Ca(2+) transient was measured with the bioluminescent protein, aequorin. Mibefradil (2 microM) produced nonsignificant changes in isometric contraction and peak systolic intracellular Ca(2+) concentration ([Ca(2+)](i)) in normal rat myocardium. Hypertrophied papillary muscles isolated from aortic-banded rats 10 weeks after operation demonstrated a prolonged duration of isometric contraction, as well as decreased amplitudes of developed tension and peak Ca(2+) transient compared with the sham-operated group. Additionally, diastolic [Ca(2+)](i) increased in hypertrophied rat myocardium. The positive inotropic effect of isoproterenol stimulation was blunted in hypertrophied muscles despite a large increase in Ca(2+) transient amplitude. Afterglimmers and corresponding aftercontractions were provoked with isoproterenol (10(-5) and 10(-4) M) stimulation in 4 out of 16 hypertrophied muscles, but were eliminated in the presence of mibefradil (2 microM). In addition, hypertrophied muscles in the presence of mibefradil had a significant improvement of contractile response to isoproterenol stimulation and a reduced diastolic [Ca(2+)](I), although a mild decrease of peak Ca(2+)-transient was also shown. However, verapamil (2 microM) did not restore the inotropic and Ca(2+) modulating effects of isoproterenol in hypertrophied myocardium. Mibefradil partly restores the positive inotropic response to beta-adrenergic stimulation in hypertrophied myocardium from aortic-banded rats, an effect that might be useful in hypertrophied myocardium with impaired [Ca(2+)](i) homeostasis.  相似文献   

12.
The effect of theophylline and isoproterenol on bovine tracheal smooth muscle tension and cyclic AMP levels was investigated. Concentrations of isoproterenol (4 × 10?6 M) and theophylline (10 mM) that relaxed carbachol-contracted tracheal muscle by 85–95% did not significantly elevate control levels of cyclic AMP. In the absence of carbachol, several-fold increases in cyclic AMP were caused by isoproterenol although no elevations by theophylline were measurable. However, when isoproterenol and theophylline were administered together, theophylline potentiated the rise in cyclic AMP caused by isoproterenol. Phosphodiesterase studies in tracheal muscle showed the presence of a high and a low Km enzyme which were inhibited by theophylline. Cyclic GMP levels were elevated in muscles contracted by carbachol as well as in carbachol-contracted muscles that had been relaxed by theophylline. In non-tension studies, in which the tracheal muscle was not under isometric tension, carbachol or theophylline alone increased cyclic GMP and together they synergistically elevated cyclic GMP. Atropine blocked the elevation caused by carbachol but not that caused by theophylline. In contrast to theophylline, isoproterenol did not elevate cyclic GMP, and in carbachol-contracted muscles that had been relaxed by isoproterenol, cyclic GMP levels were no different from control. Also, in non-tension studies, isoproterenol decreased basal cyclic GMP and antagonized the increase in cyclic GMP due to carbachol.The results indicate that whole-tissue levels of cyclic AMP and cyclic GMP do not correlate with the state of tracheal smooth muscle tension. Cyclic GMP levels do not clearly correlate with either contraction or relaxation. The inhibition by carbachol of increases in cyclic AMP due to isoproterenol and the inhibition by isoproterenol of increases in cyclic GMP due to carbachol provide evidence for a reciprocal cholinergic-adrenergic antagonism of cyclic AMP and cyclic GMP levels. The antagonism did not appear to be due to either cyclic nucleotide affecting the elevation of the other since the levels of both cyclic nucleotides were depressed.  相似文献   

13.
Mammalian myocardial contractility is believed to be related to the amount of calcium contained in a highly labile superficial calcium pool. The purpose of this study was to determine the role of such sites in the positive inotropic effect of isoproterenol. Lanthanum, an ion that is restricted to the extracellular space and that displaces the superficially bound calcium, was selected as a tool for this investigation. In Langendorff preparations of the guinea pig heart, lanthanum decreased the basal contractility index (+dP/dtmax) in a concentration-dependent fashion (0.05-3 microM) and blocked the inotropic response of isoproterenol in a noncompetitive manner (0.25-3 microM). Three-micromolar lanthanum (i) reduced basal contractility and the maximum response to isoproterenol by 97 and 95%, respectively, (ii) had no significant effect (p greater than 0.05) on basal and isoproterenol-induced cyclic AMP levels, and (iii) had no effect on the Kd of [3H]nitrendipine binding, but reduced the Bmax by 31%. While 1 microM lanthanum reduced basal contractility and the maximum response to isoproterenol by 90 and 70%, respectively, it had no effect on [3H]nitrendipine binding. These results suggest that the effects of such low concentrations of lanthanum (less than or equal to 3 microM) are not related to a direct action on the calcium channels and are not mediated by an inhibition of isoproterenol stimulation of the enzyme adenylate cyclase. Therefore, one interpretation of these results suggests that superficially bound calcium is required for the inotropic response of isoproterenol.  相似文献   

14.
The purpose of the present investigation was to determine the nature of the functional interaction of muscarinic agonists with cAMP-generating and cAMP-independent agonists in left atria. Negative inotropic responses of rabbit isolated left atrial strips to the muscarinic agonist carbachol were measured in the absence and presence of equi-active inotropic doses of the beta-adrenoceptor stimulant isoproterenol (Iso), the mixed alpha- and beta-adrenoceptor stimulant phenylephrine (PE) plus 1 microM timolol to block the beta-receptor mediated component of its response, and elevated extracellular Ca2+. Carbachol produced dose-dependent negative inotropic responses in left atrial strips, which were much greater than control in the presence of either Iso, or PE plus timolol. However, carbachol responses were of a similar magnitude to the control in the presence of elevated extracellular Ca2+. In the presence of timolol, PE had no significant effect on cAMP levels in left atrial strips, and inotropic responses to carbachol alone and in combination with PE plus timolol were accompanied by significant increases in cGMP levels but no change in cAMP levels. Carbachol attenuated Iso-induced increases in cAMP levels, but decreases in left atrial tension were proportionally greater than the decreases in cAMP levels produced by carbachol in the presence of Iso. These results suggest that the antiadrenergic effects of muscarinic receptor stimulation may occur by a different mechanism in left atria than has been previously reported in ventricular muscle. While the nature of this mechanism is unknown, it may involve antagonism by muscarinic agents of both alpha- and beta-adrenoceptor mediated increases in Ca2+ influx.  相似文献   

15.
Television video microscopy combined with photoelectric recording was used to determine the influence of a number of positive inotropic agents on the amplitude (peak height) and the course of the contraction of electrically paced myocytes in 4-day monolayer cultures derived from the heart ventricles of 1 to 2-day old rats. Cyclic AMP was determined in parallel cultures of the same cell population. Reductions in time to 90% of peak height, 90% of relaxation time, and duration of contraction caused by peak height-augmenting concentrations of isoproterenol, epinephrine, dibutyryl cyclic AMP, and 1-methyl-3-isobutylxanthine, but not of theophylline, correlated with rises in cellular cyclic AMP levels. Ouabain, a rise in extracellular CaCl2, and, in some experiments, phenylephrine in the presence of propranolol increased peak height, but did not change time to 90% of peak height, 90% of relaxation time, duration of contraction, and cyclic AMP content. These responses are compared to those observed by other authors in intact cardiac muscle and are discussed in the light of evidence linking increased myocardial cyclic AMP levels with an abbreviation of systole.  相似文献   

16.
The role of cyclic AMP in the control of vascular smooth muscle tone was studied by monitoring the effects of prostaglandin E1 (PGE1), isoproterenol and forskolin on cyclic AMP levels and tension in rabbit aortic rings. PGE1, isoproterenol and forskolin all increased cyclic AMP levels in rabbit aortic rings. Isoproterenol and forskolin relaxed phenylephrine-contracted aortic rings, but PGE1 contracted the rings in the presence or absence of phenylephrine. Isoproterenol relaxed these PGE1-contracted aortic rings without further change in total cyclic AMP levels, which were already elevated by the PGE1 alone. Pretreatment with forskolin potentiated the effects of PGE1 on cyclic AMP levels. PGE1 caused contractions in muscles partially relaxed by forskolin, even though very large increases in cyclic AMP levels (30 fold) were produced by PGE1 in the presence of forskolin. Isoproterenol was able to relax these forskolin-treated, PGE1-contracted muscles with no further increase in cyclic AMP levels. Thus, there does not appear to be a good correlation between total tissue levels of cyclic AMP and tension in these experiments. Our results suggest that, if cyclic AMP is responsible for relaxation of smooth muscle, some form of functional compartmentalization of cyclic AMP must exist in this tissue.  相似文献   

17.
1. A method is described for the isolation of rat parotid acinar cells by controlled digestion of the gland with trypsin followed by collagenase. As judged by Trypan Blue exclusion, electron microscopy, water, electrolyte and ATP concentrations and release of amylase and lactate dehydrogenase, the cells are morphologically and functionally intact. 2. A method was developed for perifusion of acinar cells by embedding them in Sephadex G-10. Release of amylase was stimulated by adrenaline (0.1-10muM), isoproternol (1 or 10 MUM), phenylephrine (1 muM), carbamoylcholine (0.1 or 1 muM), dibutyryl cycle AMP (2 MM), 3-isobutyl-1-methylxanthine (1mM) and ionophore A23187. The effects of phenylephrine, carbamoylcholine and ionophore A23187 required extracellular Ca2+, whereas the effects of adrenaline and isoproterenol did not. 3. The incorporation of 45Ca into parotid cells showed a rapidly equilibrating pool (1-2 min) corresponding to 15% of total Ca2+ and a slowly equilibrating pool (greater than 3h) of probably a similar dimension. Cholinergic and alpha-adrenergic effectors and ionophore A23187 and 2,4-dinitrophenol increased the rate of incorporation of 45Ca into a slowly equilibrating pool, whereas beta-adrenergic effectors and dibutyryl cyclic AMP were inactive. 4. The efflux of 45Ca from cells into Ca2+-free medium was inhibited by phenylephrine and carbamoylcholine and accelerated by isoproterenol, adrenaline (beta-adrenergic effect), dibutyryl cyclic AMP and ionophore A23187. 5. A method was developed for the measurement of exchangeable 45Ca in mitochondria in parotid pieces. Incorporation of 45Ca into mitochondria was decreased by isoproterenol, dibutyryl cyclic AMP or 2,4-dinitrophenol, increased by adrenaline, and not changed significantly by phenylephrine or carbamoylcholine. Release of 45Ca from mitochondria in parotid pieced incubated in a Ca2+-free medium was increased by isoproterenol, adrenaline, dibutyryl cyclic AMP or 2,4-dinitrophenol and unaffected by phenylephrine or carbamoylcholine. 6. These findings are compatible with a role for Ca2+ as a mediator of amylase-secretory responses in rat parotid acinar cells, but no definite conclusions about its role can be drawn in the absence of knowledge of the molecular mechanisms involved, their location, and free Ca2+ concentration in appropriate cell compartment(s).  相似文献   

18.
Endothelin is a positive inotropic agent in human and rat heart in vitro   总被引:10,自引:0,他引:10  
We have investigated the response to endothelin of isolated atrial and ventricular trabeculae from failing human hearts obtained at transplant. Results indicate that endothelin exerts a significant positive inotropic effect on human atrial and ventricular tissue, with increases in developed tension of 74.6 +/- 14.1% (+/- SEM) and 9.9 +/- 4.0%, respectively. Further studies on rat cardiac muscle demonstrate that the greater inotropic effect on atrial than ventricular muscle is also exhibited by the rat heart in vitro, with 39.9 +/- 10.7% and 17.1 +/- 5.9% increases in developed tension for atria and papillary muscle, respectively. Studies in rat atria also provide no evidence for an effect of endothelin on the frequency of spontaneous contractions. These results suggest that the potential exists for regulation of cardiac function in humans and rats by endothelial-derived factors such as endothelin, possibly via augmentation of atrial systole.  相似文献   

19.
Gossypol is a natural toxicant present in cottonseeds, and is hepatotoxic to animals and human. The effect of gossypol on cytosolic free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatocytes was explored using fura-2 as a fluorescent Ca2+ indicator. Gossypol increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 2 microM. The Ca2+ signal was reduced by removing extracellular Ca2+ or by 10 microM La3+, but was not affected by nifedipine, verapamil or diltiazem. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ partly reduced 10 microM gossypol-induced Ca2+ release; and conversely pretreatment with gossypol abolished thapsigargin-induced Ca2+ release. The Ca2+ release induced by 10 microM gossypol was not changed by inhibiting phospholipase C with 2 microM U73122 or by depleting ryanodine-sensitive Ca2+ stores with 50 microM ryanodine. Together, the results suggest that in human hepatocytes, gossypol induced a [Ca2+]i increase by causing store Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and by inducing Ca2+ influx.  相似文献   

20.
1. Inotropic effects of isoproterenol and extracellular Ca2+ were compared in left atrial muscle isolated from F344 and SD rats. Preparations from the F344 strain were more sensitive to the actions of both agents. 2. The chronotropic action of isoproterenol was not different in right atria isolated from the two strains. 3. This suggests that the strain-related difference in responsiveness to the inotropic effect of isoproterenol is not caused by heterogeneity in the beta-adrenoceptor/adenylate cyclase system but rather by variations in excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号