首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3-4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose.  相似文献   

3.
Elsewhere, we reported the safety and efficacy results of a multicenter phase 3 trial of recombinant human alpha -galactosidase A (rh-alpha GalA) replacement in patients with Fabry disease. All 58 patients who were enrolled in the 20-wk phase 3 double-blind, randomized, and placebo-controlled study received subsequently 1 mg/kg of rh-alpha GalA (agalsidase beta, Fabrazyme, Genzyme Corporation) biweekly in an ongoing open-label extension study. Evidence of long-term efficacy, even in patients who developed IgG antibodies against rh- alpha GalA, included the continuously normal mean plasma globotriaosylceramide (GL-3) levels during 30 mo of the extension study and the sustained capillary endothelial GL-3 clearance in 98% (39/40) of patients who had a skin biopsy taken after treatment for 30 mo (original placebo group) or 36 mo (original enzyme-treated group). The mean serum creatinine level and estimated glomerular filtration rate also remained stable after 30-36 mo of treatment. Infusion-associated reactions decreased over time, as did anti-rh- alpha GalA IgG antibody titers. Among seroconverted patients, after 30-36 mo of treatment, seven patients tolerized (no detectable IgG antibody), and 59% had > or =4-fold reductions in antibody titers. As of 30 mo into the extension trial, three patients were withdrawn from the study because of positive serum IgE or skin tests; however, all have been rechallenged successfully at the time of this report. Thus, enzyme replacement therapy for 30-36 mo with agalsidase beta resulted in continuously decreased plasma GL-3 levels, sustained endothelial GL-3 clearance, stable kidney function, and a favorable safety profile.  相似文献   

4.
OBJECTIVE: Fabry disease results from a deficiency in the activity of alpha-d-galactosidase A and subsequent accumulation of neutral glycosphingolipids in lysosomes. This study investigated whether lysosomal enzymes can indicate biochemical changes in the lysosomal apparatus induced by enzyme replacement therapy (ERT). DESIGN AND METHODS: Eight patients were monitored by clinical and biochemical tests and several lysosomal glycohydrolases were measured in plasma and leucocytes. RESULTS: Before starting ERT, beta-d-glucuronidase in leukocytes was markedly increased. After 1 month of therapy, enzyme levels dropped in all patients. In the patients who regularly followed the therapy, the enzyme levels remained stable for the next 20 months. In one patient who interrupted therapy for 2 months, the enzyme levels rose again. CONCLUSIONS: Lysosomal enzymes can be useful for monitoring biochemical changes in patients with Fabry disease receiving ERT. Though these findings refer to only a small number of patients, the correlation between beta-d-glucuronidase levels and ERT is interesting and might serve as a basis for further studies to define the potential of this enzyme in monitoring the effects of ERT in lysosomal storage disorders.  相似文献   

5.
The endocytosis of alpha-galactosidase A was studied in cultured fibroblasts from patients with Fabry disease. Alpha-galactosidase A was purified from human placenta by chromatography on concanavalin A-Sepharose, DEAE-cellulose, and N-epsilon-aminocaproyl-alpha-D-galactosylamine-Sepharose. Separation of the high-uptake form of the enzyme from the low-uptake form was accomplished by chromatography on ECTEOLA-cellulose. With the high-uptake form of the enzyme, the uptake was linear at low concentrations of enzyme and had a Kuptake of 0.01 U/ml of medium that corresponds to a Km of 5.0 x 10(-9) M. At high concentrations of enzyme, it became saturated. The high-uptake form could be converted to the low-uptake form by treatment with acid phosphatase. Mannose-6-P strongly inhibited the active uptake of the enzyme. Once taken up into the lysosomes of Fabry disease fibroblasts, alpha-galactosidase A activity was rapidly lost in the first 2 days of incubation at 37 degrees C, but was fairly stable for the next 6 days. The half-life of internalized alpha-galactosidase A activity was calculated to be 4 days. Crosslinking of the enzyme with hexamethylene diisocyanate did not increase the intracellular stability of alpha-galactosidase A activity.  相似文献   

6.
Preclinical studies of enzyme-replacement therapy for Fabry disease (deficient alpha-galactosidase A [alpha-Gal A] activity) were performed in alpha-Gal A-deficient mice. The pharmacokinetics and biodistributions were determined for four recombinant human alpha-Gal A glycoforms, which differed in sialic acid and mannose-6-phosphate content. The plasma half-lives of the glycoforms were approximately 2-5 min, with the more sialylated glycoforms circulating longer. After intravenous doses of 1 or 10 mg/kg body weight were administered, each glycoform was primarily recovered in the liver, with detectable activity in other tissues but not in the brain. Normal or greater activity levels were reconstituted in various tissues after repeated doses (10 mg/kg every other day for eight doses) of the highly sialylated AGA-1 glycoform; 4 d later, enzyme activity was retained in the liver and spleen at levels that were, respectively, 30% and 10% of that recovered 1 h postinjection. Importantly, the globotriaosylceramide (GL-3) substrate was depleted in various tissues and plasma in a dose-dependent manner. A single or repeated doses (every 48 h for eight doses) of AGA-1 at 0.3-10.0 mg/kg cleared hepatic GL-3, whereas higher doses were required for depletion of GL-3 in other tissues. After a single dose of 3 mg/kg, hepatic GL-3 was cleared for > or =4 wk, whereas cardiac and splenic GL-3 reaccumulated at 3 wk to approximately 30% and approximately 10% of pretreatment levels, respectively. Ultrastructural studies demonstrated reduced GL-3 storage posttreatment. These preclinical animal studies demonstrate the dose-dependent clearance of tissue and plasma GL-3 by administered alpha-Gal A, thereby providing the in vivo rationale-and the critical pharmacokinetic and pharmacodynamic data-for the design of enzyme-replacement trials in patients with Fabry disease.  相似文献   

7.
Fabry disease is a genetic disease caused by a deficiency of α-galactosidase A (GLA), which leads to systemic accumulation of glycolipids, predominantly globotriaosylceramide (Gb3). With the introduction and spread of enzyme replacement therapy (ERT) with recombinant GLAs for this disease, a useful biomarker for assessing the response to ERT is strongly required. We measured the tissue level of lyso-globotriaosylsphingosine (lyso-Gb3) in Fabry mice by means of high performance liquid chromatography, and compared it with the Gb3 level. The results revealed a marked increase in the lyso-Gb3 level in most tissues of Fabry mice, and which decreased after the administration of a recombinant GLA as in the case of Gb3, which is usually used as a biomarker of Fabry disease. The response was more impressive for lyso-Gb3 compared with for Gb3, especially in kidney tissues, in which a defect significantly influences the morbidity and mortality in patients with this disease. The plasma level of lyso-Gb3 also decreased after the injection of the enzyme, and it was well related to the degradation of tissue lyso-Gb3. Thus, lyso-Gb3 is expected to be a useful new biomarker for assessing the response to ERT for Fabry disease.  相似文献   

8.
Human beta-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of alpha- and beta-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are commonly used to produce recombinant enzymes for ERT. The problem of antigenicity due to differences in N-glycan structures between mammalian and yeast glycoproteins was potentially resolved by using alpha-1,6-mannosyltransferase-deficient (och1Delta) yeast as the host. Genes encoding the alpha- and beta-subunits of HexA were integrated into the yeast cell, and the heterodimer was expressed together with its isozymes HexS (alphaalpha) and HexB (betabeta). A total of 57 mg of beta-hexosaminidase isozymes, of which 13 mg was HexA (alphabeta), was produced per liter of medium. HexA was purified with immobilized metal affinity column for the His tag attached to the beta-subunit. The purified HexA was treated with alpha-mannosidase to expose mannose-6-phosphate (M6P) residues on the N-glycans. The specific activities of HexA and M6P-exposed HexA (M6PHexA) for the artificial substrate 4MU-GlcNAc were 1.2 +/- 0.1 and 1.7 +/- 0.3 mmol/h/mg, respectively. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis pattern suggested a C-terminal truncation in the beta-subunit of the recombinant protein. M6PHexA was incorporated dose dependently into GM2 gangliosidosis patient-derived fibroblasts via M6P receptors on the cell surface, and degradation of accumulated GM2 ganglioside was observed.  相似文献   

9.
Fabry disease is an inborn error of glycosphingolipid metabolism caused by the deficiency of lysosomal alpha-galactosidase A (alpha-Gal A). We have established transgenic mice that exclusively express human mutant alpha-Gal A (R301Q) in an alpha-Gal A knock-out background (TgM/KO mice). This serves as a biochemical model to study and evaluate active-site specific chaperone (ASSC) therapy for Fabry disease, which is specific for those missense mutations that cause misfolding of alpha-Gal A. The alpha-Gal A activities in the heart, kidney, spleen, and liver of homozygous TgM/KO mice were 52.6, 9.9, 29.6 and 44.4 unit/mg protein, respectively, corresponding to 16.4-, 0.8-, 0.6- and 1.4-fold of the endogenous enzyme activities in the same tissues of non-transgenic mice with a similar genetic background. Oral administration of 1-deoxygalactonojirimycin (DGJ), a competitive inhibitor of alpha-Gal A and an effective ASSC for Fabry disease, at 0.05 mM in the drinking water of the mice for 2 weeks resulted in 13.8-, 3.3-, 3.9-, and 2.6-fold increases in enzyme activities in the heart, kidney, spleen and liver, respectively. No accumulation of globotriaosylceramide, a natural substrate of alpha-Gal A, could be detected in the heart of TgM/KO mice after DGJ treatment, indicating that degradation of the glycolipid in the heart was not inhibited by DGJ at that dosage. The alpha-Gal A activity in homozygous or heterozygous fibroblasts established from TgM/KO mice (TMK cells) was approximately 39 and 20 unit/mg protein, respectively. These TgM/KO mice and TMK cells are useful tools for studying the mechanism of ASSC therapy, and for screening ASSCs for Fabry disease.  相似文献   

10.
Fabry disease is treated by two-weekly infusions with α-galactosidase A, which is deficient in this X-linked globotriaosylceramide (Gb3) storage disorder. Elevated plasma globotriaosylsphingosine (lysoGb3) is a hallmark of classical Fabry disease. We investigated effects of enzyme replacement therapy (ERT) on plasma levels of lysoGb3 and Gb3 in patients with classical Fabry disease treated with agalsidase alfa at 0.2 mg/kg, agalsidase beta at 0.2 mg/kg or at 1.0 mg/kg bodyweight. Each treatment regimen led to prominent reductions of plasma lysoGb3 in Fabry males within 3 months (P = 0.0313), followed by relative stability later on. Many males developed antibodies against α-galactosidase A, particularly those treated with agalsidase beta. Patients with antibodies tended towards smaller correction in plasma lysoGb3 concentration, whereas treatment with high dose agalsidase beta allowed a reduction comparable to patients without antibodies. Pre-treatment plasma lysoGb3 concentrations of Fabry females were relatively low. In all females and with each treatment regimen, ERT gave reduction or stabilisation of plasma lysoGb3. Our investigation revealed that ERT of Fabry patients reduces plasma lysoGb3, regardless of the recombinant enzyme used. This finding shows that ERT can correct a characteristic biochemical abnormality in Fabry patients.  相似文献   

11.
BACKGROUND: Fabry disease, an X-linked inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase alpha-galactosidase A (EC 3.2.1.22; alpha-Gal A). The nature of the molecular lesions in the alpha-Gal A gene in 30 unrelated families was determined to provide precise heterozygote detection, prenatal diagnosis, and define genotype-phenotype correlations. MATERIALS AND METHODS: Genomic DNA was isolated from affected males and/or carrier females from 30 unrelated families with Fabry disease. The entire alpha-Gal A coding region and flanking intronic sequences were analyzed by PCR amplification and automated sequencing. RESULTS: Twenty new mutations were identified, each in a single family: C142R, G183D, S235C, W236L, D244H, P259L, M267I, I289F, Q321E, C378Y, C52X, W277X, IVS4(+4), IVS6(+2), IVS6(-1), 35del13, 256del1, 892ins1, 1176del4, and 1188del1. In the remaining 10 unrelated Fabry families, 9 previously reported mutations were detected: M42V, R112C, S148R, D165V, N215S (in 2 families), Q99X, C142X, R227X, and 1072del3. Haplotype analysis using markers closely flanking the alpha-Gal A gene indicated that the two patients with the N215S lesion were unrelated. The IVS4(+4) mutation was a rare intronic splice site mutation that causes Fabry disease. CONCLUSIONS: These studies further define the heterogeneity of mutations in the alpha-Gal A gene causing Fabry disease, permit precise heterozygote detection and prenatal diagnosis, and help delineate phenotype-genotype correlations in this disease. 相似文献   

12.
13.
Fabry disease is an X-linked lysosomal storage disease (LSD) caused by deficient activity of α-Galactosidase A (α-Gal A). As a result, glycosphingolipids, mainly globotriaosylceramide (Gb3), progressively accumulate in body fluids and tissues. Studies aiming at the identification of secondary lipid alterations in Fabry disease may be potentially useful for the monitorization of the response to enzyme replacement therapy (ERT) and development of future therapies. The focus of this study was to evaluate if α-Gal A deficiency has an effect on two key groups of molecules of sphingolipids metabolism: glucosylceramides (GlucCers) and ceramides (Cers). Studies performed in a mouse model of Fabry disease showed reduced level of GlucCer and normal level of Cer in plasma, liver, spleen, kidney and heart. Moreover, analysis of GlucCer isoforms in Fabry knockout mice showed that GlucCer isoforms are unequally reduced in different tissues of these animals. ERT had a specific effect on the liver's GlucCer levels of Fabry knockout mice, increasing hepatic GlucCer to the levels observed in wild type mice. In contrast to Fabry knockout mice, plasma of Fabry patients had normal GlucCer and Cer but an increased GlucCer/Cer ratio. This alteration showed a positive correlation with plasma globotriaosylsphingosine (lyso-Gb3) concentration. In conclusion, this work reveals novel secondary lipid imbalances caused by α-Gal A deficiency.  相似文献   

14.
Fabry disease is an X-linked lysosomal storage disease afflicting 1 in 40,000 males with chronic pain, vascular degeneration, cardiac impairment, and other symptoms. Deficiency in the lysosomal enzyme alpha-galactosidase (alpha-GAL) causes an accumulation of its substrate, which ultimately leads to Fabry disease symptoms. Here, we present the structure of the human alpha-GAL glycoprotein determined by X-ray crystallography. The structure is a homodimer with each monomer containing a (beta/alpha)8 domain with the active site and an antiparallel beta domain. N-linked carbohydrate appears at six sites in the glycoprotein dimer, revealing the basis for lysosomal transport via the mannose-6-phosphate receptor. To understand how the enzyme cleaves galactose from glycoproteins and glycolipids, we also determined the structure of the complex of alpha-GAL with its catalytic product. The catalytic mechanism of the enzyme is revealed by the location of two aspartic acid residues (D170 and D231), which act as a nucleophile and an acid/base, respectively. As a point mutation in alpha-GAL can lead to Fabry disease, we have catalogued and plotted the locations of 245 missense and nonsense mutations in the three-dimensional structure. The structure of human alpha-GAL brings Fabry disease into the realm of molecular diseases, where insights into the structural basis of the disease phenotypes might help guide the clinical treatment of patients.  相似文献   

15.
Female patients affected by Fabry disease, an X-linked lysosomal storage disorder, exhibit a wide spectrum of symptoms, which renders diagnosis, and treatment decisions challenging. No diagnostic test, other than sequencing of the alpha-galactosidase A gene, is available and no biomarker has been proven useful to screen for the disease, predict disease course and monitor response to enzyme replacement therapy. Here, we used urine proteomic analysis based on capillary electrophoresis coupled to mass spectrometry and identified a biomarker profile in adult female Fabry patients. Urine samples were taken from 35 treatment-naïve female Fabry patients and were compared to 89 age-matched healthy controls. We found a diagnostic biomarker pattern that exhibited 88.2% sensitivity and 97.8% specificity when tested in an independent validation cohort consisting of 17 treatment-naïve Fabry patients and 45 controls. The model remained highly specific when applied to additional control patients with a variety of other renal, metabolic and cardiovascular diseases. Several of the 64 identified diagnostic biomarkers showed correlations with measures of disease severity. Notably, most biomarkers responded to enzyme replacement therapy, and 8 of 11 treated patients scored negative for Fabry disease in the diagnostic model. In conclusion, we defined a urinary biomarker model that seems to be of diagnostic use for Fabry disease in female patients and may be used to monitor response to enzyme replacement therapy.  相似文献   

16.
Fabry disease is a lysosomal storage disease arising from deficiency of the enzyme alpha-galactosidase A. Two recombinant protein therapeutics, Fabrazyme (agalsidase beta) and Replagal (agalsidase alfa), have been approved in Europe as enzyme replacement therapies for Fabry disease. Both contain the same human enzyme, alpha-galactosidase A, but they are produced using different protein expression systems and have been approved for administration at different doses. To determine if there is recognizable biochemical basis for the different doses, we performed a comparison of the two drugs, focusing on factors that are likely to influence biological activity and availability. The two drugs have similar glycosylation, both in the type and location of the oligosaccharide structures present. Differences in glycosylation were mainly limited to the levels of sialic acid and mannose-6-phosphate present, with Fabrazyme having a higher percentage of fully sialylated oligosaccharides and a higher level of phosphorylation. The higher levels of phosphorylated oligomannose residues correlated with increased binding to mannose-6-phosphate receptors and uptake into Fabry fibroblasts in vitro. Biodistribution studies in a mouse model of Fabry disease showed similar organ uptake. Likewise, antigenicity studies using antisera from Fabry patients demonstrated that both drugs were indistinguishable in terms of antibody cross-reactivity. Based on these studies and present knowledge regarding the influence of glycosylation on protein biodistribution and cellular uptake, the two protein preparations appear to be functionally indistinguishable. Therefore, the data from these studies provide no rationale for the use of these proteins at different therapeutic doses.  相似文献   

17.
Beck M 《Human genetics》2007,121(1):1-22
During the last few years, much progress has been made in the treatment of lysosomal storage disorders. In the past, no specific therapy was available for the affected patients, and management consisted solely of supportive care and treatment of complications. Since enzyme replacement therapy has been successfully introduced for patients with Gaucher disease, this principle of treatment has been taken into consideration for other lysosomal storage disorders as well. Clinical trials could demonstrate the clinical benefit of this therapeutic principle in Fabry disease, mucopolysaccharidoses type I, II and VI and in Pompe disease. However, the usefulness of enzyme replacement therapy is limited due to the fact that a given enzyme preparation does not have beneficial effects on all aspects of a disorder in the same degree. Additionally, clinical studies have shown that many symptoms of a lysosomal storage disorder even after long-term treatment are no more reversible. A further novel therapeutic option for lysosomal storage disorders consists of the application of small molecules that either inhibit a key enzyme which is responsible for substrate synthesis (substrate deprivation) or act as a chaperone to increase the residual activity of the lysosomal enzyme (enzyme enhancing therapy). Various gene therapeutic techniques (in vivo and ex vivo technique) have been developed in order to administer the gene that is defective in a patient to the bloodstream or directly to the brain in order to overcome the blood–brain barrier. This review will give an insight into these newly developed therapeutic strategies and will discuss their advantages and limitations.  相似文献   

18.
The synthesis and processing of the human lysosomal enzyme alpha-galactosidase A was examined in normal and Fabry fibroblasts. In normal cells, alpha-galactosidase A was synthesized as an Mr = 50,500 precursor, which contained phosphate groups in oligosaccharide chains cleavable by endoglucosaminidase H. The precursor was processed via ill-defined intermediates to a mature Mr 46,000 form. Processing was complete within 3-7 days after synthesis. In the presence of NH4Cl and in I-cell fibroblasts, the majority of newly synthesized alpha-galactosidase A was secreted as an Mr = 52,000 form. For comparison, the processing and stability of alpha-galactosidase A were examined in fibroblasts from five unrelated patients with Fabry disease, which is caused by deficient alpha-galactosidase A activity. In one cell line, synthesis of immunologically cross-reacting polypeptides was not detectable. In another, the synthesis, processing, and stability of alpha-galactosidase A was indistinguishable from that in normal fibroblasts. In a third Fabry cell line, the mutation retarded the maturation of alpha-galactosidase A. Finally, in two cell lines, alpha-galactosidase A polypeptides were synthesized that were rapidly degraded following delivery to lysosomes. These results clearly indicate that Fabry disease comprises a heterogeneous group of mutations affecting synthesis, processing, and stability of alpha-galactosidase A.  相似文献   

19.
20.
Fan JQ  Ishii S 《The FEBS journal》2007,274(19):4962-4971
Protein misfolding is recognized as an important pathophysiological cause of protein deficiency in many genetic disorders. Inherited mutations can disrupt native protein folding, thereby producing proteins with misfolded conformations. These misfolded proteins are consequently retained and degraded by endoplasmic reticulum-associated degradation, although they would otherwise be catalytically fully or partially active. Active-site directed competitive inhibitors are often effective active-site-specific chaperones when they are used at subinhibitory concentrations. Active-site-specific chaperones act as a folding template in the endoplasmic reticulum to facilitate folding of mutant proteins, thereby accelerating their smooth escape from the endoplasmic reticulum-associated degradation to maintain a higher level of residual enzyme activity. In Fabry disease, degradation of mutant lysosomal alpha-galactosidase A caused by a large set of missense mutations was demonstrated to occur within the endoplasmic reticulum-associated degradation as a result of the misfolding of mutant proteins. 1-Deoxygalactonojirimycin is one of the most potent inhibitors of alpha-galactosidase A. It has also been shown to be the most effective active-site-specific chaperone at increasing residual enzyme activity in cultured fibroblasts and lymphoblasts established from Fabry patients with a variety of missense mutations. Oral administration of 1-deoxygalactonojirimycin to transgenic mice expressing human R301Q alpha-galactosidase A yielded higher alpha-galactosidase A activity in major tissues. These results indicate that 1-deoxygalactonojirimycin could be of therapeutic benefit to Fabry patients with a variety of missense mutations, and that the active-site-specific chaperone approach using functional small molecules may be broadly applicable to other lysosomal storage disorders and other protein deficiencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号