共查询到15条相似文献,搜索用时 125 毫秒
1.
杉木人工林不同深度土壤CO2通量 总被引:3,自引:0,他引:3
土壤CO2通量具有明显的时间和空间变异性。土壤温度和含水量是影响土壤CO2通量的重要因素,同时,不同深度的土壤CO2通量对温度和含水量变化的响应差异较大,因此,研究土壤CO2通量和影响因素随土壤深度的变化,对于准确评估土壤碳排放具有重要意义。选择福建三明杉木人工林(Cunninghamia lanceolata)作为研究对象,利用非散射红外CO2浓度探头和Li-8100开路式土壤碳通量系统,并使用Fick扩散法计算了0-60cm深度土壤CO2的通量,结果表明:(1)5种扩散模型计算的表层(5cm)CO2通量与Li-8100测量结果均具有显著相关性(P<0.01),Moldrup气体扩散模型计算结果较好。(2)土壤CO2浓度随深度的增加而升高,但60cm深度以下土壤CO2浓度开始降低;不同深度土壤CO2浓度的日变化均呈现单峰型;0-60cm土壤CO2通量日通量均值变化范围为0.54-2.17μmol m-2 s-1;(3)指数拟合分析显示,5、10cm和60cm深度处土壤CO2通量与温度具有显著相关性,Q10值分别为1.35、2.01和4.95。不同深度土壤含水量与CO2通量的相关性不显著。 相似文献
2.
生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响 总被引:9,自引:0,他引:9
采用土柱室内模拟的方法,通过添加0%、0.5%、2%、4%、6%、8%生物黑炭于土壤中,测定土壤CO2、CH4、N2O排放通量,探讨生物黑炭对旱地土壤CO2、CH4、N2O排放及其环境效益的影响。结果表明:室内模拟土柱培养期内,施用生物黑炭能显著增加CO2排放,且生物黑炭添加百分数(x)与CO2累积排放量(y)之间满足线性方程:y=12.591x+235.02(R2=0.834,n=24);当生物黑炭添加量达到2%及以上时,基本抑制了CH4的排放和显著减少土壤N2O排放,并显著减少CH4和N2O的综合温室效应,当其达到4%以上时,CH4和N2O的综合温室效应降幅更大并趋于稳定,但施用少量生物黑炭(0.5%)可显著促进N2O排放,对减少CH4和N2O综合温室效应并无明显效果。生物黑炭表观分解率随其添加量的增加逐渐减少,生物黑炭添加比例越高,积累于土壤中的碳越多,从投入生物黑炭量与固碳量和减排比角度综合考虑,农业生产中推荐生物黑炭施用量为20 t/hm2,其固碳减排效果俱佳。 相似文献
3.
由于全球气候变化,预计未来我国亚热带地区干旱频率和持续时间将会增加。森林土壤CO2的释放是陆地生态系统碳循环的重要组成部分,然而,有关不同深度土壤CO2通量对干旱响应的理解仍相当有限。选择武夷山针叶林(Coniferous Forest,CF)和常绿阔叶林(Evergreen Broadleaved Forest,EBF)为研究对象,于2014年6月至2015年12月,采用梯度法计算10、30 cm和50 cm深度各层土壤CO2通量,探讨模拟干旱对其影响。结果表明:CF和EBF样地土壤CO2浓度均随土壤深度的增加而升高。CF和EBF样地对照(CK)处理10 cm深度土壤CO2生产量分别占总CO2生产量的53.5%和55.7%,表明土壤CO2生产量主要来源于浅层土壤,这可能与浅层土壤有高的有机碳含量及细根生物量主要分布区有关。干旱处理使CF和EBF样地不同深度土壤CO2通量均显著减少。在两个样地土壤CO2通量的温度敏感性(Q10)值均随着土壤深度的增加而减少。干旱处理显著减少了CF样地浅层土壤的Q10值(P=0.02),对深层土壤影响不显著(30 cm:P=0.30;50 cm:P=0.23);而在EBF样地干旱处理显著减少了深层土壤的Q10值(30 cm:P=0.02;50 cm:P=0.01),对浅层土壤影响不显著(P=0.32)。 相似文献
4.
全球变暖已经成为不争的事实,陆地生态系统碳循环的研究受到了各界广泛关注,是当前全球变化研究中的重点。土壤CO2排放是陆地生态系统与大气间二氧化碳交换的最大通量之一,当前陆地生态系统中土壤CO2排放如何响应全球气候变暖及其影响因素仍不清楚,限制了对土壤碳循环过程及影响机制的深入认识。旨在明确全球变暖背景下陆地生态系统中土壤CO2排放格局及影响因素。基于Web of Science、PubMed和中国知网等中英文期刊数据库,充分收集全球范围内的相关野外试验文献81篇,提取出65个研究位置和213组相关研究数据,采用Meta分析方法探讨陆地生态系统土壤CO2排放对增温的响应特征,分析其与海拔、气候、土壤含水量、容重(BD)、pH、全氮(TN)和土壤有机碳(SOC)的相关关系。结果表明:陆地生态系统中土壤CO2排放对增温整体有显著的正向响应,在农、林、草生态系统中,增温使土壤CO2排放分别显著增加13.1%、18.0%、5.9% (P<0.05),森林生态系统对增温响应的正效应最强烈;增温能在短时期内促进土壤呼吸,但随着增温持续时间增加,土壤呼吸对温度的敏感性会降低,对温度变化产生适应性,从而使其对增温的响应能力减弱;响应特征受到环境因子、土壤特性以及其他试验条件等的影响,绝大多数条件下对增温表现出显著的正响应特征,不同影响因子之间共同作用、相互影响。增温通常能够改变植物生物量、土壤养分含量及微生物数量和活性,从而影响到植被根际呼吸和土壤呼吸速率。相关分析表明,海拔对土壤CO2排放有显著负向影响,而年均气温、年均降水量、土壤含水量和仪器嵌入土壤深度则对土壤CO2排放产生显著正向影响。这些结果对于理解全球土壤CO2排放的时空变化格局有重要意义,也为准确评价全球变暖背景下土壤碳汇功能及其持续性提供理论依据。 相似文献
5.
为了解重庆市中梁山岩溶槽谷区隧道建设对土壤CO2浓度变化特征的影响,于2017年12月1日至2018年11月25日对中梁山岩溶槽谷区的隧道影响区和非隧道影响区典型的白蜡树林(FC)和于2017年3月22日-2018年1月18日对耕地(CU)、灌丛(SH)、竹林(BA)下土壤CO2浓度及其相关的环境因子进行研究,探讨了隧道影响和非隧道影响的岩溶区土壤CO2浓度变化规律及其影响因子。研究表明:隧道影响区(A区)土壤CO2浓度低于非隧道影响区(B区),A区A-CU、A-SH、A-BA和A-FC土壤CO2浓度的平均值分别为4479.26、6053.10、8152.70 mg/m3和17162.47 mg/m3,B区B-CU、B-SH、B-BA和B-FC分别为6244.67、6647.01、9422.94 mg/m3和18396.09 mg/m3。但隧道影响区和非隧道影响区的土壤CO2浓度具有相同的垂直和季节变化趋势,在垂直方向上,土壤CO2浓度随土壤深度的增加而增加,在季节变化上,雨季(夏季和秋季)土壤CO2浓度大于旱季(冬季和春季)。经相关分析发现土壤温度是影响土壤CO2浓度变化的主控因子,土壤CO2浓度随土壤温度的升高而升高,降水较多时土壤含水率过高,会抑制土壤CO2的生产,同时,土壤理化性质也对土壤CO2浓度具有一定的影响。隧道影响区土壤CO2浓度的变化受外界环境变化的影响大。 相似文献
6.
大气CO2浓度升高对春玉米土壤呼吸的影响 总被引:2,自引:0,他引:2
为探讨春玉米不同生育期土壤呼吸速率对大气CO2浓度升高的响应,以黄土高原旱作春玉米为研究对象,通过改进的开顶式气室(OTC)模拟大气CO2浓度升高的环境,在田间条件下设置自然大气CO2浓度(CK)、OTC对照(OTC,CO2浓度同CK)与CO2浓度升高(OTC+CO2,OTC系统自动控制CO2浓度700 μmol/mol)3种处理。研究了旱区覆膜高产栽培春玉米播前(V0)、六叶期(V6)、九叶期(V9)、吐丝期(R1)、乳熟期(R3)、蜡熟期(R5)及完熟期(R6)土壤呼吸速率对大气CO2浓度升高的响应特征,以及大气CO2浓度升高对土壤呼吸速率的温度与水分效应的影响。研究发现,OTC+CO2处理土壤呼吸速率,与CK相比,在R3和R5期分别增加43%、104%(P<0.05),与OTC相比,R3和R5期分别提升了63%、109%(P<0.05);OTC处理与CK相比,在整个生育期对土壤呼吸影响不显著;3种处理条件下,土壤温度和水分随生育期变化趋势基本一致,土壤呼吸速率与土壤温度和水分分别呈指数相关和抛物线型相关;结果表明:大气CO2浓度升高对土壤呼吸的影响因生育期而异,土壤温度和土壤水分是影响旱地农田土壤呼吸的重要因素,CO2浓度升高会使土壤呼吸温度效应值(Q10)降低,土壤呼吸对土壤水分响应的阈值提高。 相似文献
7.
大气CO2浓度升高已成为世界范围内的重要环境问题。CO2浓度升高势必会对植物的生理生态变化产生重要影响。综述了国内外有关高浓度CO2对树木生理生态影响研究的最新进展,具体包括高浓度CO2对树木生长发育、光合和呼吸作用、抗氧化系统、树木代谢物质、挥发性有机化合物以及树木凋落物等方面的影响。高浓度CO2一般会促进树木地上植株的生长和发育,但也因树种差异而有所不同。最新研究表明,高浓度CO2促进了树木细根周转,树木根系生长在大气CO2浓度升高条件下表现为促进作用,这种作用加快了全球森林生态系统的C循环。高浓度CO2虽然在一定程度上促进树木光合速率的增加,但长期熏蒸也往往会发生光合驯化,这种现象产生的生理学机制目前仍无定论。高浓度CO2对树木呼吸作用尤其是根系呼吸的影响将是未来研究的重点和难点。高浓度CO2一般会提高树木抗氧化酶活性与抗氧化剂含量,但不同树种响应高浓度CO2的过程和机理也有所差异。研究表明,高浓度CO2一般对树木凋落物的分解产生不利影响,但也因树种而异。需要强调的是,目前关于树木地下部分、树木对高浓度CO2的适应机理和重要过程(碳氮水耦合及基因调控等)以及多个树种包括不同类型树种及不同品种之间比较研究较少;关于某一重要生理生态机制(如根系生理代谢)尤其是多个生态因子复合条件下缺乏长期深入的研究。在此基础上给出了大气CO2浓度升高下树木生理生态学研究的未来发展方向,包括高CO2浓度条件下树木根系生理代谢及机制、树木碳氮水耦合的生理过程及机制、不同生态因子复合作用对树木生理影响机制以及树木分子作用机理等方面的研究。这些研究不仅将丰富森林树木应对未来气候变化的有关科学理论,也为全球气候变化背景下实现森林树种生态功能的优化选择及森林生态系统的可持续发展与经营提供重要的生理生态学理论依据和参考。 相似文献
8.
城市小型景观水体CO2与CH4排放特征及影响因素 总被引:1,自引:0,他引:1
淡水生态系统被认为是大气温室气体排放的重要来源,尤其在人类活动影响下,其排放强度可能进一步增强。城市小型景观水体是城市生态系统的重要组成,具有面积小、数量大以及人类干扰强的特征,其温室气体排放特征及影响因素尚不清楚。选择重庆市大学城8个景观水体和周边2个自然水体为对象,于2019年1、4、7、10月,利用漂浮箱和顶空法分析了水体CO2与CH4的溶存浓度及排放通量,旨在揭示城市小型景观水体CO2与CH4排放强度、时空变异特征以及影响因素。结果表明,10个小型水体CO2、CH4的溶存浓度范围分别为10.75-116.25 μmol/L和0.09-3.61 μmol/L(均值分别为(47.6±29.3)μmol/L、(1.13±0.56)μmol/L),均为过饱和状态;漂浮箱法实测的8个景观水体CO2和CH4排放通量均值分别为(72.7±65.9)mmol m-2 d-1和(2.31±3.48)mmol m-2 d-1(顶空法估算值为(69.7±82.0)mmol m-2 d-1和(3.69±2.92)mmol m-2 d-1),是2个自然水体的3.5-6.1和2.0-4.5倍,呈较强的CO2、CH4排放源;居民区景观水体CO2和CH4排放略高于校园区,均显著高于对照的自然水体;CO2排放夏季最高,秋季次之,冬、春季最低,CH4呈夏季>秋季≈春季>冬季的季节模式,温度和水体初级生产共同影响CO2和CH4排放的季节模式;水生植物分布对景观水体CO2、CH4排放有显著影响,有植物分布的水域比无植物水域平均高1.97和2.94倍;漂浮箱法和顶空法测得气体通量线性关系较好,但顶空法测得CO2通量在春季明显偏低,而CH4则普遍偏高。相关分析表明,景观水体碳、氮浓度、pH值以及DO等对CO2排放具有较好的指示性,CH4排放通量主要与水体中碳、磷浓度有关。城市小型景观水体CO2、CH4排放通量远高于大部分已有自然水体的研究结果,呈一种较强的大气温室气体排放源,在区域淡水系统温室气体排放清单中具有重要贡献,未来研究中应给以更多关注。 相似文献
9.
皆伐火烧对亚热带森林不同深度土壤CO2通量的影响 总被引:1,自引:0,他引:1
评估不同深度土壤的CO_2通量是研究土壤碳动态的重要手段。目前有关皆伐火烧对森林土壤碳排放的影响研究仅局限于表层土壤,而对不同深度土壤碳排放影响鲜见报道。以米槠(Castanopsis carlesii)次生林(对照)及其皆伐火烧后林地为研究对象,利用非红外散射CO_2探头测定土壤CO_2浓度,并结合Fick第一扩散法则估算不同深度(0—80 cm)土壤CO_2通量。结果表明:(1)皆伐火烧改变土壤向大气排放的表观CO_2通量,在皆伐火烧后的2个月内土壤表观CO_2通量显著高于对照68%;2个月后,土壤表观CO_2通量低于对照37%。(2)皆伐火烧后,除10—20 cm的CO_2通量提高外,其余各深度(0—10、20—40、40—60 cm和60—80 cm)的CO_2通量均降低。同时,皆伐火烧改变不同土层对土壤呼吸的贡献率,降低0—10 cm土层的贡献率,提高10—20 cm土层的贡献率。(3)对照样地仅0—10 cm土壤CO_2通量与温度呈显著指数相关,10—40 cm深度CO_2通量则与土壤含水率呈显著线性相关。皆伐火烧后0—10 cm和10—20 cm处土壤的CO_2通量均与温度呈指数相关。说明皆伐火烧改变了不同深度土壤CO_2通量对于环境因子的响应。因此为准确评估和预测皆伐火烧对土壤与大气间碳交换的影响,应考虑皆伐火烧后不同时期土壤CO_2通量的变化,以及不同深度土壤CO_2通量对皆伐火烧的响应。 相似文献
10.
高原湿地是生态系统中重要的碳汇。土壤CO_2通量作为高原湿地生态系统碳收支的重要组成部分,碳的释放对区域碳平衡发挥着重要的作用。藏香猪放牧是我国高海拔藏区一种特有的放牧方式,是导致高原湿地土壤退化的重要干扰因素之一,并影响着土壤CO_2通量的变化。采用土壤CO_2通量自动测量系统(LI-8100A,LI-COR,USA),分别在不同季节对滇西北布伦、哈木谷、伊拉草原上藏香猪干扰和对照(非干扰土壤)CO_2通量变化进行监测,研究发现,藏香猪干扰型放牧降低了土壤CO_2排放通量,且表现出明显的日波动变化特征。相比旱季,雨季不同放牧方式影响下的土壤CO_2通量差异性更为明显,其中布伦、哈木谷、伊拉草原较对照分别降低了70.4%、87.5%、60.7%。CO_2排放通量与土壤理化性状及植物生物量的回归分析表明,对照样地的土壤容重、孔隙度、pH、总活性碳、植物生物量与土壤CO_2通量具有显著的相关性(P0.01)。通过植物-土壤指数(plant-soil index,PSI)分析了藏香猪干扰型放牧对高原湿地的影响,总体来看,对照样地中土壤CO_2通量与PSI之间具有较好的线性关系,可以用来很好的预测未来高原湿地土壤CO_2通量的变化。该研究结果不仅有效估算了强干扰放牧影响下的高原湿地土壤碳排放量,而且为加强藏香猪放牧的科学管理,高原湿地生态系统的保护、恢复及重建提供了理论支持。 相似文献
11.
土地利用变化作为全球气候变化研究的重要内容之一,对土壤CO2的排放具有重要影响。岩溶区石漠化治理过程中植被恢复伴随着土地利用方式的转变,其对土壤CO2排放的影响有待进一步研究。基于控制性实验,以土壤、岩溶含水介质初始条件相同,仅土地利用方式不同的贵州普定沙湾模拟试验场为研究对象,通过1年的土壤CO2浓度和通量数据,研究岩溶区不同土地利用方式下土壤CO2的排放规律及其影响因素。结果表明:(1)土壤CO2的浓度和通量具有明显的季节变化规律,不同季节下的土壤CO2通量呈现昼夜变化规律,温度和降雨影响着土壤CO2的排放,前者可促进排放量,后者可抑制排放量,且不同土地利用方式受影响的程度不同;(2)耕作活动也会影响土壤CO2的排放,耕作使得土壤变得松散,加上岩溶区下伏基岩的溶蚀作用,增加了土壤CO2向含水层的扩散,导致春季耕地表现为负通量;(3)不同土地利用方式下土壤CO2的年排... 相似文献
12.
西南喀斯特地区轮作旱地土壤CO2通量 总被引:1,自引:0,他引:1
中国已承诺大幅降低单位GDP碳排放,农业正面临固碳减排的重任.西南喀斯特地区环境独特,旱地面积占据优势比例,土壤碳循环认识亟待加强.以贵州省开阳县玉米-油菜轮作旱地为研究对象,采用密闭箱-气相色谱法对整个轮作期土壤CO2释放通量进行了观测研究,结果表明:(1)整个轮作期旱地均表现为CO2的释放源.其中油菜生长季土壤CO2通量为(178.8±104.8)mg CO2·m-2·h-1,玉米生长季为(403.0±178.8) mg CO2·m-2·h-1,全年平均通量为(271.1±176.4) mg CO2·m-2·h-1,高于纬度较高地区的农田以及同纬度的次生林和松林;(2)CO2通量日变化同温度呈现显著正相关关系,季节变化与温度呈现显著指数正相关关系,并受土壤湿度的影响,基于大气温度计算得出的Q10为2.02,高于同纬度松林以及低纬度的常绿阔叶林;(3)CO2通量与土壤pH存在显著线性正相关关系,显示出土壤pH是研究区旱地土壤呼吸影响因子之一. 相似文献
13.
斯洛文尼亚典型岩溶区土壤剖面CO2冬季动态变化特征 总被引:1,自引:0,他引:1
土壤CO2是岩溶作用的重要驱动力,也是陆地生态系统碳循环与岩溶碳循环的纽带。选择斯洛文尼亚典型岩溶区草地生态系统土壤剖面,开展大气与土壤CO2、土壤水分与土壤温度等指标高分辨率监测,分析不同指标动态变化、分层效应及相互关系。结果表明,土壤温度、水分和CO2含量变幅分别为3.8—12.9℃、26.9%—34.7%和(682—6760)×10-6。土壤温度变化趋势与气温变化一致,上部土壤层随气温出现昼夜变化,响应敏感,下部土壤层则表现为多日变化;土壤水分变化主要受降雨控制,对降雨过程响应及时,不同深度分层效应显著,上部与下部含量较高,暗示草地根系有利于土壤水分保持,土岩界面的存在可能是下部保持较高水分的原因。土壤CO2含量总体上受土温控制,随着深度增加逐渐升高。降雨过程中,不同深度土壤CO2含量均有不同程度且较快速的升降现象,暗示雨水入渗土壤层后产生的活塞效应和随后的向下迁移是导致土壤CO2含量陡升陡降的主要原因。从降雨过程大气CO 相似文献
14.
Xuexia Yuan Xiangui Lin Haiyan Chu Rui Yin Huayong Zhang Junli Hu Jianguo Zhu 《生态学报》2006,26(1):48-53
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes. 相似文献
15.
Effects of elevated atmospheric CO2 on soil enzyme activities at different nitrogen application treatments 下载免费PDF全文
It has been predicted that elevated atmospheric CO2 will increase enzyme activity as a result of CO2-induced carbon entering the soil. The objective of this study was to investigate the effects of elevated atmospheric CO2 on soil enzyme activities under a rice/wheat rotation. This experiment was conducted in Wuxi, Jiangsu, China as part of the China FACE (Free Air Carbon Dioxide Enrichment) Project. Two atmospheric CO2 concentrations (580±60) and (380±40) μmol·mol-1) and three N application treatments (low-150, normal-250 and high-350 kg N·hm-2) were included. Soil samples (0-10 cm) were collected for analysis of β-glucosidase, invertase, urease, acid phosphates and β-glucosaminidase activities. The results revealed that with elevated atmospheric CO2 β-glucosidase activity significantly decreased (P < 0.05) at low N application rates; had no significant effect with a normal N application rate; and significantly increased (P < 0.05) with a high N application rate. For urease activity, at low and normal N application rates (but not high N application rate), elevated atmospheric CO2 significantly increased (P < 0.05) it. With acid phosphatase elevated atmospheric CO2 only had significant higher effects (P < 0.05) at high N application rates. Under different CO2 concentration, effects of N fertilization are also different. Soil β-glucosidase activity at ambient CO2 concentration decreased with N fertilization, while it increased at elevated CO2 concentration. In addition, invertase and acid phosphatase activities at elevated CO2 concentration, significantly increased (P < 0.05) with N treatments, but there was no effect with the ambient CO2 concentration. For urease activity, at ambient CO2 concentration, N fertilization increased it significantly (P < 0.05), whereas at elevated CO2 concentration it was not significant. Additionally, with β-glucosaminidase activity, there were no significant effects from N application. In general, then, elevated atmospheric CO2 increased soil enzyme activity, which may be attributed to the following two factors: (1) elevated atmospheric CO2 led to more plant biomass in the soil, which in turn stimulated soil microbial biomass and activity; and (2) elevated atmospheric CO2 increased plant photosynthesis, thereby increasing plant-derived soil enzymes. 相似文献