首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
徐胜  陈玮  何兴元  黄彦青  高江艳  赵诣  李波 《生态学报》2015,35(8):2452-2460
大气CO2浓度升高已成为世界范围内的重要环境问题。CO2浓度升高势必会对植物的生理生态变化产生重要影响。综述了国内外有关高浓度CO2对树木生理生态影响研究的最新进展,具体包括高浓度CO2对树木生长发育、光合和呼吸作用、抗氧化系统、树木代谢物质、挥发性有机化合物以及树木凋落物等方面的影响。高浓度CO2一般会促进树木地上植株的生长和发育,但也因树种差异而有所不同。最新研究表明,高浓度CO2促进了树木细根周转,树木根系生长在大气CO2浓度升高条件下表现为促进作用,这种作用加快了全球森林生态系统的C循环。高浓度CO2虽然在一定程度上促进树木光合速率的增加,但长期熏蒸也往往会发生光合驯化,这种现象产生的生理学机制目前仍无定论。高浓度CO2对树木呼吸作用尤其是根系呼吸的影响将是未来研究的重点和难点。高浓度CO2一般会提高树木抗氧化酶活性与抗氧化剂含量,但不同树种响应高浓度CO2的过程和机理也有所差异。研究表明,高浓度CO2一般对树木凋落物的分解产生不利影响,但也因树种而异。需要强调的是,目前关于树木地下部分、树木对高浓度CO2的适应机理和重要过程(碳氮水耦合及基因调控等)以及多个树种包括不同类型树种及不同品种之间比较研究较少;关于某一重要生理生态机制(如根系生理代谢)尤其是多个生态因子复合条件下缺乏长期深入的研究。在此基础上给出了大气CO2浓度升高下树木生理生态学研究的未来发展方向,包括高CO2浓度条件下树木根系生理代谢及机制、树木碳氮水耦合的生理过程及机制、不同生态因子复合作用对树木生理影响机制以及树木分子作用机理等方面的研究。这些研究不仅将丰富森林树木应对未来气候变化的有关科学理论,也为全球气候变化背景下实现森林树种生态功能的优化选择及森林生态系统的可持续发展与经营提供重要的生理生态学理论依据和参考。  相似文献   

2.
郑伟  钟志海  杨梓  刘雅萌  徐军田 《生态学报》2014,34(24):7293-7299
为了探讨未来大气CO2升高对不同生长光强下大型海藻的影响,选取经济红藻龙须菜为实验材料,研究了其生长速率、光合作用、呼吸作用、叶绿素荧光参数以及光合色素对CO2和光强的响应。实验设置两个CO2浓度,正常空气水平CO2浓度(390μL/L)和高CO2浓度(1000μL/L);两个光强梯度,高光(300μmol m-2s-1)和低光(100μmol m-2s-1)。结果表明,CO2和光强对龙须菜的生长和光合作用有明显的交互作用。大气CO2升高并没有显著影响龙须菜的生长速率,但在不同CO2处理下,龙须菜对光强的响应不同。在空气水平下,光强的变化对其生长速率影响不显著。而在高CO2作用下,高光处理下的藻体有更高的生长速率。CO2显著促进高光生长下龙须菜的呼吸作用速率,但是在低光下作用不明显。而对于光合作用速率来说,低光培养下的藻体CO2表现为负面效应,但对高光下生长的藻体作用不明显。CO2增加没有改变龙须菜生长状态下的电子传递速率,但在高光下,CO2表现为一定的抑制作用。CO2显著降低了龙须菜天线色素藻红蛋白和叶绿素a的含量。这些CO2与光强的结合效应表明,大气CO2的升高对龙须菜光合生理特性的影响随着光强的变化而呈现不同的效应,在未来评估CO2的增加对大型海藻的影响时,要充分考虑其他环境因子的耦合效应。  相似文献   

3.
刘树霞  徐军田  邹定辉 《生态学报》2015,35(21):7089-7096
为了研究经济海藻羊栖菜对大气CO2浓度增加与紫外辐射(UVR)相互作用的响应,设置两个CO2浓度(380μL/L和800μL/L)以及两种辐射处理,即PAR处理(滤除UV-A、UV-B,藻体仅接受可见光,400—700nm)和PAB处理(全波长辐射280—700nm)培养海藻,探讨了羊栖菜生长、光合作用、呼吸作用、光合色素含量、可溶性糖和蛋白以及硝酸还原酶活性的变化情况。结果表明高浓度CO2显著提高羊栖菜藻体的相对生长速率,并且紫外辐射的负面效应在高CO2处理下表现不显著。高CO2降低了藻体的光合作用速率,而UVR的负面效应和生长体现为一致性,但是羊栖菜的呼吸作用没有受到环境变化的明显影响。羊栖菜的光合色素叶绿素a和类胡萝卜素在高浓度CO2处理下明显降低,而UVR没有明显影响。环境因子对羊栖菜的可溶性糖没有影响,但是在高CO2和全波长辐射处理下,藻体可溶性蛋白的含量显著增加。同时高CO2明显提高了硝酸还原酶的活性,并且仅在高浓度CO2处理下藻体中UVR对其活性有抑制作用。CO2和UVR对羊栖菜的大多数生理特性存在明显的交互作用,在未来CO2浓度进一步增加的情况下,UVR的负面效应将会得到一定程度的缓解,这样有利于羊栖菜在养殖海区获得更高的产量。  相似文献   

4.
气候变化对海藻龙须菜生长与光合作用耐热特性的影响   总被引:1,自引:0,他引:1  
丁柳丽  邹定辉  刘露  邓亚运 《生态学报》2015,35(10):3267-3277
为探讨大气CO2升高和温室效应对龙须菜生长及生理生化特性的影响,在4种条件下培养龙须菜:1)对照组(390μL/L CO2+20℃),2)CO2升高组(700μL/L CO2+20℃),3)温度升高组(390μL/L CO2+24℃),4)温室效应组(700μL/L CO2+24℃),测定藻体生长和生化组分以及高温胁迫下的最大光化学量子产量(Fv/Fm)和光能利用效率(α)、光合速率(Pn)和呼吸速率(Rd)。结果表明,CO2升高、温度升高以及温室效应均促进龙须菜的生长,温室效应下的促进作用更明显。温室效应使龙须菜具较高的Pn和Rd以及较低的可溶性蛋白(SP)和可溶性碳水化合物(SC)含量。高浓度CO2对叶绿素(Chl a)和类胡萝卜素(Car)含量没有显著影响,而高温使其上升;藻红蛋白(PE)和藻蓝蛋白(PC)含量不受CO2浓度和温度的影响。龙须菜Fv/Fm、α、Pn和Rd值,在32℃处理3 h后略有上升,在36℃处理3 h后下降,而在40℃处理20 min后降到极低水平。正常温度(20℃)生长的龙须菜最高耐受温度在32—36℃之间,而较高温(24℃)生长的龙须菜在36—40℃之间;生长温度对光合作用和呼吸作用耐热性能的影响比CO2浓度的影响更大;而温室效应生长条件下的龙须菜光合作用表现出更突出的耐热性能。  相似文献   

5.
树干呼吸(E_s)是森林生态系统碳循环过程的重要组成部分,深入理解树干呼吸过程对未来气候变暖的响应及反馈机制有助于更加精确地估算森林生态系统碳储量。为揭示毛白杨树干呼吸及其温度敏感性的昼夜变化和季节动态规律,利用Li-Cor6400便携式光合作用测定系统及其配套使用的土壤呼吸测量气室(LI-6400-09)对冀南平原区毛白杨的树干呼吸和树干温度实施为期1年的连续监测。结果表明:(1)在生长季,毛白杨树干呼吸与树干温度之间在晚上呈现正相关的关系(R~2=0.88);相反,两者在白天为负相关的关系(R~2=0.96)。(2)整个观测期内,毛白杨树干呼吸和树干温度均呈现"钟形"的变化曲线,树干呼吸与树干温度之间存在着较好的指数函数关系(R~2=0.93),且树干呼吸的温度敏感性系数(Q_(10))为2.62;不同季节毛白杨树干呼吸的Q_(10)存在差异,生长季的Q_(10)(1.95)明显低于非生长季(3.00),表明生长呼吸和维持呼吸对温度的响应也并不相同。(3)温度矫正后的毛白杨树干呼吸(R_(15))在昼夜和季节尺度上均存在明显的变异,即夜晚的R_(15)显著高于白天(P0.01),生长季的R_(15)明显高于非生长季(P0.05);树干可溶性糖含量与生长季的R_(15)存在较好的相关性(R~2=0.52),而非生长季的R_(15)却主要受到树干淀粉含量的影响。研究结果表明,在生长季,毛白杨树干呼吸的在日变化主要受到温度的影响,而在季节尺度上Q_(10)的变异则与树干呼吸中维持呼吸所占比例及树干中非结构性碳水化合物(可溶性糖和淀粉)的含量及类型紧密相关。  相似文献   

6.
树干表面CO_2通量是森林生态系统碳收支的重要组成部分,对全球碳平衡产生重要影响。近年来,全球变化导致植物光合产物供应发生改变,这将影响树干表面CO_2通量。然而,关于光合产物供应如何影响树干表面CO_2通量的机理仍不清楚。以盆栽杉木(Cunninghamia lanceolata)幼苗为研究对象,采用遮光方法减少光合产物供应,通过自制呼吸气室,使用Li-8100测定树干表面CO_2通量,并结合树干可溶性糖、淀粉和非结构性碳及树干温度等数据分析遮光对树干表面CO_2通量的影响。结果表明:遮光后树干可溶性糖、淀粉和非结构性碳含量分别显著下降了55.0%、78.9%和64.3%。遮光处理阶段树干表面CO_2通量平均下降39.9%,且下降幅度随着遮光时间的延长而增加;此外,遮光降低了树干表面CO_2通量的温度敏感性。恢复光照后,树干表面CO_2通量、树干可溶性糖、淀粉和非结构性碳含量以及树干温度均恢复至对照水平。可见,光合产物供应变化对树干表面CO_2通量具有调控作用,而且能够通过调控树干表面CO_2通量对温度变化的响应对全球碳循环产生重要影响。  相似文献   

7.
树干表面和土壤CO2释放通量是森林生态系统碳循环的重要组成部分,但修枝措施对其如何影响还不太清楚。本文以杉木纯林为研究对象,通过修枝处理(对照、轻度修枝和重度修枝)改变光合产物供应,探讨其对树干表面CO2通量和土壤CO2通量产生的影响。在研究区内使用LI-6400-09便携式光合系统连续一个月测量树干表面和土壤CO2通量。结果表明:修枝对树干表面CO2通量并没有显著影响,尽管日最大液流略有下降。修枝轻微降低了土壤CO2通量,轻度修枝和重度修枝的土壤CO2通量相对于对照分别下降了11.8%和17.9%,但统计并不显著。因此,修枝对树干表面和土壤CO2通量的短期影响有限。  相似文献   

8.
许飞  王传宽 《生态学报》2015,35(10):3233-3243
揭示树干维持呼吸(RM)的时间变化特征及其调控因子有助于理解树木碳代谢过程及其对环境变化的响应和构建森林碳循环机理模型。采用红外气体分析法原位测定东北东部山区4个针叶树种(红松、红皮云杉、樟子松和兴安落叶松)的春、秋季节RM日动态及其影响因子。结果表明:秋季和春季4个树种RM日变化多随树干温度(TW)而变化,但RM峰值大小和出现时间以及日变化幅度因树种和季节而异。TW解释了RM(除春季樟子松外)变异性的50%以上,但RM对TW响应滞后1.5 h(春季樟子松为3 h)。将RM标准化到TW为10℃(R10)时发现,秋季R10波动在0.54μmol CO2m-2s-1(兴安落叶松)—0.78μmol CO2m-2s-1(红皮云杉)之间,而春季R10则波动在0.87μmol CO2m-2s-1(红松)—1.10μmol CO2m-2s-1(樟子松)之间,前者平均低于后者约40%。然而,各树种秋季和春季RM的Q10值差异不显著(P0.05),波动在1.52(樟子松)—1.82(红皮云杉)之间。秋季和春季所有树种的R10与树木胸径(DBH)之间均呈显著的正相关关系(P0.05),而Q10与DBH则多呈负相关关系(P0.05),表明DBH可作为估测这些针叶树种RM的参数之一。  相似文献   

9.
师志冰  周勇  李夏  任安芝  高玉葆 《生态学报》2013,33(19):6135-6141
以内蒙古草原常见伴生种、感染内生真菌的天然禾草羽茅为研究对象,通过比较不同CO2浓度和不同养分供应条件下,带内生真菌和不带菌植物在种子发芽和幼苗生长等方面的差异,探讨带内生真菌的天然禾草对CO2浓度增加的响应。结果表明:CO2浓度增加对带菌种子发芽率和发芽速度均无显著影响,但CO2浓度增加显著降低了不带菌种子的发芽率和发芽速度,即CO2浓度升高加大了带菌和不带菌种子发芽率之间的差异;内生真菌感染显著提高了宿主植物的最大净光合速率和水分利用效率;羽茅的营养生长受CO2浓度和养分供应的交互影响,高CO2浓度对生长的促进作用只出现在充足养分供应条件下;CO2浓度升高和内生真菌感染对植物根系形态有显著的交互作用,在正常CO2浓度下,带菌植株根径>1.05 mm的根系比例显著高于不带菌植株,随着CO2浓度的升高,带菌植株上述根径根系所占比例无显著变化而不带菌植株所占比例显著升高,CO2浓度升高导致带菌和不带菌不同根径根系分配之间的差异缩小。  相似文献   

10.
赵旭辉  孔繁翔  谢薇薇  史小丽 《生态学报》2012,32(21):6880-6891
工业革命以来由于化石燃料的大量燃烧,大气CO2水平不断增加,预计在21世纪末将增至现有水平的两倍,达到750 μL/L。作为全球初级生产力的重要贡献者,浮游植物应对CO2水平升高的生理生态响应必然会对水生生态系统和碳、氮等元素的生物地球化学循环产生重要影响。全球CO2水平的升高将显著改变水体的碳化学环境,淡水生态系统(湖泊和河流)由于容量小变化比海洋更为显著。水体碳化学环境的改变首先会影响浮游植物个体,在高CO2水平下,浮游植物的细胞会有变小的趋势,并且细胞的光合作用强度也会有不同程度的增加,其中细胞较小或者不具有碳浓缩机制(CCM)的浮游植物增加较多,此外浮游植物细胞的化学元素计量值也将显著改变。随后浮游植物个体水平上的变化会进一步影响水生生态系统,例如水体初级生产力水平的提高,浮游植物、浮游动物群落结构组成以及水体微食物网结构的变化等。此外浮游植物对CO2水平升高的生理生态响应程度还与水体的营养水平有关。总结了大气CO2水平升高对浮游植物生理生态影响的研究方法,展望了未来可能的研究方向。  相似文献   

11.
The accurate assessment of actual tree stem respiration and its relation with temperature plays a considerable role in investigating the forest carbon cycle. An increasing number of research reports have indicated that tree stem respiration determined with the commonlyapplied chamber gas exchange measuring system does not follow expectations regarding temperature relationships. This method is based on the nowadays widely-accepted theory that the respired CO2 in a tree stem would all diffuse outward into the atmosphere. However, it neglects partial CO2 that is dissolved in the xylem sap and is carried away by the transpirational stream. Scientists have started to realize that the respired CO2 measured with the chamber gas exchange method is only a portion of the total stem respiration (CO2 efflux), while the other portion, which is sometimes very substantial in quantity (thought to occupy maybe 15%–75% of the total stem respiration), is transported to the upper part of the stem and to the canopy by sap flow. This suggests that the CO2 produced by respiration is re-allocated within the stem. Accordingly, the change in CO2 efflux could be reflected in the rates of sap flow in addition to its dependence on temperature. Proper methods and instruments are required to quantify the internal and external CO2 fluxes in the trunk and their interaction with related environmental factors.  相似文献   

12.
Soil CO2 efflux is a major component of net ecosystem productivity (NEP) of forest systems. Combining data from multiple researchers for larger-scale modeling and assessment will only be valid if their methodologies provide directly comparable results. We conducted a series of laboratory and field tests to assess the presence and magnitude of soil CO2 efflux measurement system × environment interactions. Laboratory comparisons were made with a dynamic, steady-state CO2 flux generation apparatus, wherein gas diffusion drove flux without creating pressure differentials through three artificial soil media of varying air-filled porosity. Under these conditions, two closed systems (Li-6400-09 and SRC-1) exhibited errors that were dependent on physical properties of the artificial media. The open system (ACES) underestimated CO2 flux. However, unlike the two other systems, the ACES results could be corrected with a single calibration equation that was unaffected by physical differences in artificial media. Both scale and rank changes occurred among the measurement systems across four sites. Our work clearly shows that soil CO2 efflux measurement system × environment interactions do occur and can substantially impact estimates of soil CO2 efflux. Until reliable calibration techniques are developed and applied, such interactions make direct comparison of published rates, and C budgets estimated using such rates, difficult.  相似文献   

13.
Summary The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO2 concentrations (to 14000 bar), but fixation of this internal CO2 was 6–10 times slower than fixation of atmospheric CO2 by these stems. Although the pool of CO2 is a trivial source of CO2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO2 fixation in CO2 response curves, light and temperature response curves in IRGA systems, and by means of O2 exchange at CO2 saturation in a leaf disc O2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO2 and O2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.  相似文献   

14.
Forest soil respiration is the sum of heterotrophic (microbes, soil fauna) and autotrophic (root) respiration. The contribution of each group needs to be understood to evaluate implications of environmental change on soil carbon cycling and sequestration. Three primary methods have been used to distinguish hetero- versus autotrophic soil respiration including: integration of components contributing to in situ forest soil CO2 efflux (i.e., litter, roots, soil), comparison of soils with and without root exclusion, and application of stable or radioactive isotope methods. Each approach has advantages and disadvantages, but isotope based methods provide quantitative answers with the least amount of disturbance to the soil and roots. Published data from all methods indicate that root/rhizosphere respiration can account for as little as 10 percent to greater than 90 percent of total in situ soil respiration depending on vegetation type and season of the year. Studies which have integrated percent root contribution to total soil respiration throughout an entire year or growing season show mean values of 45.8 and 60.4 percent for forest and nonforest vegetation, respectively. Such average annual values must be extrapolated with caution, however, because the root contribution to total soil respiration is commonly higher during the growing season and lower during the dormant periods of the year.  相似文献   

15.
The nature of photosynthetic acclimation to elevated CO2 is evaluated from the results of over 40 studies focusing on the effect of long-term CO2 enrichment on the short-term response of photosynthesis to intercellular CO2 (the A/Ci response). The effect of CO2 enrichment on the A/Ci response was dependent on growth conditions, with plants grown in small pots (< 5 L) or low nutrients usually exhibiting a reduction of A at a given Ci, while plants grown without nutrient deficiency in large pots or in the field tended to exhibit either little reduction or an enhancement of A at a given Ci following a doubling or tripling of atmospheric CO2 during growth. Using theoretical interpretations of A/Ci curves to assess acclimation, it was found that when pot size or nutrient deficiency was not a factor, changes in the shape of A/Ci curves which are indicative of a reallocation of resources within the photosynthetic apparatus typically were not observed. Long-term CO2 enrichment usually had little effect or increased the value of A at all Ci. However, a minority of species grown at elevated CO2 exhibited gas exchange responses indicative of a reduced amount of Rubisco and an enhanced capacity to metabolize photosynthetic products. This type of response was considered beneficial because it enhanced both photosynthetic capacity at high CO2 and reduced resource investment in excessive Rubisco capacity. The ratio of intercellular to ambient CO2 (the Ci/Ca ratio) was used to evaluate stomatal acclimation. Except under water and humidity stress, Ci/Ca exhibited no consistent change in a variety of C3 species, indicating no stomatal acclimation. Under drought or humidity stress, Ci/Ca declined in high-CO2 grown plants, indicating stomata will become more conservative during stress episodes in future high CO2 environments.Abbreviations A net CO2 assimilation rate - Ci (Ca) intercellular (ambient) partial pressure of CO2 - operational Ci intercellular partial pressure of CO2 at a given ambient partial pressure of CO2 - gs stomatal conductance - normal CO2 current atmospheric mole fraction of CO2 (330 to 355 mol mol–1) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

16.
Transpiration and photosynthesis of current-year stems and adult leaves of different deciduous tree species were investigated to estimate their probable influence on carbon balance. Peridermal transpiration of young stems was found to be rather small as compared to the transpiration of leaves (stem/leaf like 1/5–1/20). A characteristic that was mainly attributable to the lower peridermal conductance to water and CO2, which made up only 8–28% of stomatal conductance. Water vapour conductance was significantly lower in stems, but also non-responsive to PAR, which led to a comparatively higher water use efficiency (WUE, ratio assimilation/transpiration). Thus, although corticular photosynthesis reached only 11–37% of leaf photosynthesis, it may be a means of improving the carbon balance of stems under limited water availability. The influence of drought stress on primary photosynthetic reactions was also studied. Under simulated drought conditions the drying time needed to provoke a 50% reduction (t 50) in dark- and light-adapted PSII efficiency (Fv/Fm, ΔF/Fm′) was up to ten times higher in stems than in leaves. Nevertheless, up to a relative water deficit (RWD) of around 40–50% dark-adapted PSII efficiency of leaves and stems was rather insensitive to dehydration, showing that the efficiency of open PS II reaction centres is not impaired. Thus, it may be concluded that in stems as well as in leaves the primary site of drought damage is at the level of dark enzyme reactions and not within PSII. However, enduring severe drought caused photoinhibitory damage to the photosynthetic apparatus of leaves and stems; thereby RWD50 values (= RWD needed to provoke a 50% reduction in Fv/Fm ad ΔF/Fm′) were comparably lower in stems as compared to leaves, indicating a possibly higher drought sensitivity of the cortex chlorenchyma.  相似文献   

17.
Defoliation can reduce net fixation of atmospheric CO2 by the canopy, but increase the intensity and duration of photosynthetically active radiation on stems. Stem CO2 flux and leaf gas exchange in young Eucalyptus globulus seedlings were measured to assess the impact of defoliation on these processes and to determine the potential contribution of re-fixation by photosynthetic inner bark in offsetting the effects of defoliation in a woody species. Pot and field trials examined how artificial defoliation of the canopy affected the photosynthetic characteristics of main stems of young Eucalyptus globulus seedlings. Defoliated potted seedlings were characterized by transient increases in foliar photosynthetic rates and concomitant decreases in stem CO2 fluxes (both in the dark and light). Defoliated field-grown seedlings showed similar stem CO2 flux responses, but of reduced magnitude. Despite demonstrating increased re-fixation capability, defoliated potted-seedlings had slowed stem growth. The green stem of seedlings exhibited largely shade-adapted characteristics. Defoliation reduced stem chlorophyll a/b ratio and increased carotenoid concentration. An increased capacity to re-fix internally respired CO2 (up to 96%) suggested that stem re-fixation represents a previously unexplored mechanism to minimize the impact of foliar loss by maximizing the contribution of all photosynthetic tissues, particularly for young seedlings.  相似文献   

18.
Three widely used methods for measuring total soil CO2 evolution are evaluated, including the dynamic CO2 absorption method, the static CO2 absorption method and the closed chamber method. The study covers laboratory experiments. numerical experiments with a simulation model and field measurements. The results are used to perform an error analysis. The aim of this error analysis is to indicate the impact of each method on the CO2 dynamics during the measurement, and to select the most suitable method for frequent field usage.Laboratory experiments and simulation results show that the dynamic CO2 absorption method has the potential to absorb all CO2 evolving at the soil surface. The results also prove that the method has only a minor impact on the CO2 concentration-depth gradient and the CO2 efflux. The static CO2 absorption method underestimates the soil CO2 evolution, because the absorption velocity is too low, due to slow diffusion processes. Measurements with the closed-chamber method are based on an increasing concentration with time under a closed cover. However, the accumulation of gas alters the concentration gradient in the soil profile and thus causes a rapidly decreasing efflux during the measurement. A commonly used mathematical procedure, which corrects for the altered concentration gradient, does not yield the exact surface efflux, because the effect of increasing storage in the soil profile is not incorporated. Field measurements of CO2 evolution, using the closed-chamber method and the dynamic CO2 absorption method confirm the trends that have been predicted by the simulation model. The results of this study indicate that the dynamic CO2 absorption method is accurate. As it is cheap and simple, it is suitable for the study of temporal and spatial dynamics of CO2 evolution from the soil.  相似文献   

19.
The [CO2] in the xylem of tree stems is typically two to three orders of magnitude greater than atmospheric [CO2]. In this study, xylem [CO2] was experimentally manipulated in saplings of sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) by allowing shoots severed from their root systems to absorb water containing [CO2] ranging from 0.04% to 14%. The effect of xylem [CO2] on CO2 efflux to the atmosphere from uninjured and mechanically injured, i.e., wounded, stems was examined. In both wounded and unwounded stems, and in both species, CO2 efflux was directly proportional to xylem [CO2], and increased 5-fold across the range of xylem [CO2] produced by the [CO2] treatment. Xylem [CO2] explained 76–77% of the variation in pre-wound efflux. After wounding, CO2 efflux increased substantially but remained directly proportional to internal stem [CO2]. These experiments substantiated our previous finding that stem CO2 efflux was directly related to internal xylem [CO2] and expanded our observations to two new species. We conclude that CO2 transported in the xylem may confound measurements of respiration based on CO2 efflux to the atmosphere. This study also provided evidence that the rapid increase in CO2 efflux observed after tissues are excised or injured is likely the result of the rapid diffusion of CO2 from the xylem, rather than an actual increase in the rate of respiration of wounded tissues.  相似文献   

20.
The response of photosynthesis to irradiance and temperature during growth was investigated in two soybean genotypes. Soybean is a species that can modify its structure and metabolism so as to adapt to differing light conditions; its responses to rapid changes in irradiance are characterized by their flexibility. However, the temperature during growth can change the response to irradiance: moreover, there may be a marked interaction with genotype.The response of photosynthesis to irradiance consists of changes in leaf thickness, which bring about variations in the mesophyll resistance to CO2 transfer. The increase in net photosynthesis per unit of leaf area is due to the increase in the amount of assimilating material beneath unit of area, as corroborated by the stability of the net photosynthesis per unit volume. Moreover, the response of photosynthesis to temperature is due to the mesophyll diffusion constant which decreases with the growth temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号