首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the hydrogen bond network is a key element for understanding water''s thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice [Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448–11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.  相似文献   

2.
The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid–liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid–liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.  相似文献   

3.
The viscosity of supercooled glycerol aqueous solutions, with glycerol mass fractions between 0.70 and 0.90, have been determined to confirm that the Avramov-Milchev equation describes very well the temperature dependence of the viscosity of the binary mixtures including the supercooled regime. On the contrary, it is shown that the free volume model of viscosity, with the parameters proposed in a recent work (He, Fowler, Toner, J. Appl. Phys. 100 (2006) 074702), overestimates the viscosity of the glycerol-rich mixtures at low temperatures by several orders of magnitude. Moreover, the free volume model for the water diffusion leads to predictions of the Stokes-Einstein product, which are incompatible with the experimental findings. We conclude that the use of these free volume models, with parameters obtained by fitting experimental data far from the supercooled and glassy regions, lead to incorrect predictions of the deterioration rates of biomolecules, overestimating their life times in these cryopreservation media.  相似文献   

4.
The hydration water of proteins is essential to biological activity but its properties are not yet fully understood. A recent study of dielectric relaxation of hydrated proteins [A. Levstik et al., Phys. Rev E.60 7604 (1999)] has found a behavior typical of a proton glass, with a glass transition of about 268 K. In order to analyze these results, we investigate the statistical mechanics and dynamics of a model of `two-dimensional water' which describes the hydrogen bonding scheme of bounded water molecules. We discuss the connection between the dynamics of bound water and charge transport on the protein surface as observed in the dielectric measurements.  相似文献   

5.
Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties.  相似文献   

6.
Water is an unusual liquid. It expands upon freezing, has minima in its volume, heat capacity, and isothermal compressibility with temperature, and shows signs of a first-order phase transition when supercooled. These anomalies disappear at high pressures. We review a recent analytical theory that predicts water's thermal properties and the main features of its phase diagram, including multiple crystalline phases and a fluid-fluid transition in the supercooled liquid. It also predicts a fragile-to-strong crossover in supercooled water's temperature-dependent relaxation processes. The theory is based on a simplified model for how triplets of waters interact via hydrogen bonds, steric repulsions, and dispersion attractions. It is designed to give simple insights into the microscopic origins of water's properties.  相似文献   

7.
《Biophysical journal》2022,121(4):540-551
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.  相似文献   

8.
Empirical studies over the past two decades have provided support for the hypothesis that schizophrenia is characterized by altered connectivity patterns in functional brain networks. These alterations have been proposed as genetically mediated diagnostic biomarkers and are thought to underlie altered cognitive functions such as working memory. However, the nature of this dysconnectivity remains far from understood. In this study, we perform an extensive analysis of functional connectivity patterns extracted from MEG data in 14 subjects with schizophrenia and 14 healthy controls during a 2-back working memory task. We investigate uni-, bi- and multivariate properties of sensor time series by computing wavelet entropy of and correlation between time series, and by constructing binary networks of functional connectivity both within and between classical frequency bands (, , , and ). Networks are based on the mutual information between wavelet time series, and estimated for each trial window separately, enabling us to consider both network topology and network dynamics. We observed significant decreases in time series entropy and significant increases in functional connectivity in the schizophrenia group in comparison to the healthy controls and identified an inverse relationship between these measures across both subjects and sensors that varied over frequency bands and was more pronounced in controls than in patients. The topological organization of connectivity was altered in schizophrenia specifically in high frequency and band networks as well as in the - cross-frequency networks. Network topology varied over trials to a greater extent in patients than in controls, suggesting disease-associated alterations in dynamic network properties of brain function. Our results identify signatures of aberrant neurophysiological behavior in schizophrenia across uni-, bi- and multivariate scales and lay the groundwork for further clinical studies that might lead to the discovery of new intermediate phenotypes.  相似文献   

9.
荧光单分子检测技术是用荧光标记来显示和追踪单个分子的构象变化、动力学,单分子之间的相互作用以及单分子操纵的研究。过去对于生命科学分子机制的研究,都是对分子群体进行研究,然后平均化来进行单分子估测。因此,单个分子的动态性和独立性也被平均化掉而无法表现出来。荧光单分子检测技术真正实现了对单个分子的实时观测,将过去被平均化并隐藏在群体测量中不能获得的信息显示出来。近几年来,荧光单分子检测技术的飞速发展,为生命科学的发展,开辟了全新的研究领域。现就荧光单分子检测技术在研究动力蛋白、DNA转录、酶反应、蛋白质动态性和细胞信号转导方面的应用进展作一综述。  相似文献   

10.
Water is essential for the activity of proteins. However, the effect of the properties of water on the behavior of proteins is only partially understood. Recently, several experiments have investigated the relation between the dynamics of the hydration water and the dynamics of protein. These works have generated a large amount of data whose interpretation is debated. New experiments measure the dynamics of water at low temperature on the surface of proteins, finding a qualitative change (crossover) that might be related to the slowing down and stop of the protein’s activity (protein glass transition), possibly relevant for the safe preservation of organic material at low temperature. To better understand the experimental data several scenarios have been discussed. Here, we review these experiments and discuss their interpretations in relation with the anomalous properties of water. We summarize the results for the thermodynamics and dynamics of supercooled water at an interface. We consider also the effect of water on protein stability, making a step in the direction of understanding, by means of Monte Carlo simulations and theoretical calculations, how the interplay of water cooperativity and hydrogen bonds interfacial strengthening affects the protein cold denaturation.  相似文献   

11.
This paper details a methodology which, when applied to magnetoencephalography (MEG) data, is capable of measuring the spatio-temporal dynamics of ‘disorder’ in the human brain. Our method, which is based upon signal entropy, shows that spatially separate brain regions (or networks) generate temporally independent entropy time-courses. These time-courses are modulated by cognitive tasks, with an increase in local neural processing characterised by localised and transient increases in entropy in the neural signal. We explore the relationship between entropy and the more established time-frequency decomposition methods, which elucidate the temporal evolution of neural oscillations. We observe a direct but complex relationship between entropy and oscillatory amplitude, which suggests that these metrics are complementary. Finally, we provide a demonstration of the clinical utility of our method, using it to shed light on aberrant neurophysiological processing in schizophrenia. We demonstrate significantly increased task induced entropy change in patients (compared to controls) in multiple brain regions, including a cingulo-insula network, bilateral insula cortices and a right fronto-parietal network. These findings demonstrate potential clinical utility for our method and support a recent hypothesis that schizophrenia can be characterised by abnormalities in the salience network (a well characterised distributed network comprising bilateral insula and cingulate cortices).  相似文献   

12.
When strips of activated airway smooth muscle are stretched cyclically, they exhibit force-length loops that vary substantially in both position and shape with the amplitude and frequency of the stretch. This behavior has recently been ascribed to a dynamic interaction between the imposed stretch and the number of actin-myosin interactions in the muscle. However, it is well known that the passive rheological properties of smooth muscle have a major influence on its mechanical properties. We therefore hypothesized that these rheological properties play a significant role in the force-length dynamics of activated smooth muscle. To test the plausibility of this hypothesis, we developed a model of the smooth muscle strip consisting of a force generator in series with an elastic component. Realistic steady-state force-length loops are predicted by the model when the force generator obeys a hyperbolic force-velocity relationship, the series elastic component is highly nonlinear, and both elastic stiffness and force generation are adjusted so that peak loop force equals isometric force. We conclude that the dynamic behavior of airway smooth muscle can be ascribed in large part to an interaction between connective tissue rheology and the force-velocity behavior of contractile proteins.  相似文献   

13.
This article presents evidence for the existence of a specific linear relationship between the entropy change and the enthalpy change in a variety of processes of small solutes in water solution. The processes include solvation of ions and nonelectrolytes, hydrolysis, oxidation–reduction, ionization of weak electrolytes, and quenching of indole fluorescence among others. The values of the proportionality constant, called the compensation temperature, lie in a relatively narrow range, from about 250 to 315 °K, for all these processes. Such behavior can be a consequence of experimental errors but for a number of the processes the precision of the data is sufficient to show that the enthalpy–entropy compensation pattern is real. It is tentatively concluded that the pattern is real, very common and a consequence of the properties of liquid water as a solvent regardless of the solutes and the solute processes studied. As such the phenomenon requires that theoretical treatments of solute processes in water be expanded by inclusion of a specific treatment of the characteristic of water responsible for compensation behavior. The possible bases of the effect are proposed to be temperature-independent heat-capacity changes and/or shifts in concentrations of the two phenomenologically significant species of water. The relationship of these alternatives to the two-state process of water suggested by spectroscopic and relaxation studies is examined. The existence of a similar and probably identical relationship between enthalpy and entropy change in a variety of protein reactions suggests that liquid water plays a direct role in many protein processes and may be a common participant in the physiological function of proteins. It is proposed that the linear enthalpy–entropy relationship be used as a diagnostic test for the participation of water in protein processes. On this basis the catalytic processes of chymotrypsin and acetylcholinesterase are dominated by the properties of bulk water. The binding of oxygen by hemoglobin may fall in the same category. Similarities and differences in the behavior of small-solute and protein processes are examined to show how they may be related. No positive conclusions are established, but it is possible that protein processes are coupled to water via expansions and contractions of the protein and that in general the special pattern of enthalpy–entropy compensation is a consequent of the properties of water which require that expansions and contractions of solutes effect changes in the free volume of the nearby liquid water. It is shown that proteins can be expected to respond to changes in nearby water and interfacial free energy by expansions and contractions. Such responses may explain a variety of currently unexplained characteristics of protein solutions. More generally, the enthalpy–entropy compensation pattern appears to be the thermodynamic manifestation of “structure making” and “structure breaking,” operationally defined terms much used in discussions of water solutions. If so, the compensation pattern is ubiquitous and requires re-examination of a large body of molecular interpretations derived from quantitative studies of processes in water. Theories of processes in water may have to be expanded to accommodate this aspect of water behavior.  相似文献   

14.
In social networks, it is conventionally thought that two individuals with more overlapped friends tend to establish a new friendship, which could be stated as homophily breeding new connections. While the recent hypothesis of maximum information entropy is presented as the possible origin of effective navigation in small-world networks. We find there exists a competition between information entropy maximization and homophily in local structure through both theoretical and experimental analysis. This competition suggests that a newly built relationship between two individuals with more common friends would lead to less information entropy gain for them. We demonstrate that in the evolution of the social network, both of the two assumptions coexist. The rule of maximum information entropy produces weak ties in the network, while the law of homophily makes the network highly clustered locally and the individuals would obtain strong and trust ties. A toy model is also presented to demonstrate the competition and evaluate the roles of different rules in the evolution of real networks. Our findings could shed light on the social network modeling from a new perspective.  相似文献   

15.
We provide a quantitative test of the hypothesis that sex role specialization may account for sex differences in lifespan in baboons if such specialization causes the dependency of fitness upon longevity, and consequently the optimal resolution to an energetic trade‐off between somatic maintenance and other physiological functions, to differ between males and females. We present a model in which females provide all offspring care and males compete for access to reproductive females and in which the partitioning of available energy between the competing fitness‐enhancing functions of growth, maintenance, and reproduction is modeled as a dynamic behavioral game, with the optimal decision for each individual depending upon his/her state and the behavior of other members of the population. Our model replicates the sexual dimorphism in body size and sex differences in longevity and reproductive scheduling seen in natural populations of baboons. We show that this outcome is generally robust to perturbations in model parameters, an important finding given that the same behavior is seen across multiple populations and species in the wild. This supports the idea that sex differences in longevity result from differences in the value of somatic maintenance relative to other fitness‐enhancing functions in keeping with the disposable soma theory.  相似文献   

16.
We investigated the thermal diffusion phenomena of a rodlike mutant filamentous fd-Y21M virus in the isotropic phase by means of an improved infrared thermal-diffusion-forced Rayleigh scattering (IR-TDFRS) setup optimized for measurements of slowly diffusing systems. Because this is the first thermal diffusion study of a stiff anisotropic solute, we investigate the influence of the shape anisotropy on the thermal diffusion behavior. The influence of temperature, fd-Y21M concentration, and ionic strength in relation with the thermodiffusion properties is discussed. We characterize and eliminate the effect of these parameters on the absolute diffusion of the rods and show that diffusion determines the behavior of the Soret coefficient because the thermal diffusion coefficient is constant in the investigated regime. Our results indicate that for the thermal diffusion behavior structural changes of the surrounding water are more important than structural changes between the charged macroions. In the investigated temperature and concentration range, the fd-Y21M virus is thermophobic for the low salt content, whereas the solutions with the high salt content change from thermophobic to thermophilic behavior with decreasing temperature. A comparison with recent measurements of other charged soft and biological matter systems shows that the shape anisotropy of the fd-virus becomes not visible in the results.  相似文献   

17.
Properties of Hemoglobin Solutions in Red Cells   总被引:13,自引:10,他引:3  
The present studies are concerned with a detailed examination of the apparent anomalous osmotic behavior of human red cells. Red cell water has been shown to behave simultaneously as solvent water for nonelectrolytes and nonsolvent water, in part, for electrolytes. The nonsolvent properties are based upon assumptions inherent in the conventional van't Hoff equation. However, calculations according to the van't Hoff equation give osmotic volumes considerably in excess of total cell water when the pH is lowered beyond the isoelectric point for hemoglobin; hence the van't Hoff equation is inapplicable for the measurement of the solvent properties of the red cell. Furthermore, in vitro measurements of osmotic and other properties of 3.7 millimolal solutions of hemoglobin have failed to reveal the presence of any salt exclusion. A new hypothesis has been developed from thermodynamic principles alone, which predicts that, at constant pH, the net charge on the hemoglobin molecule decreases with increased hemoglobin concentration. The existence of such cooperative interaction may be inferred from the effect of pH on the changes in hemoglobin net charge as the spacing between the molecules decreases. The resultant movement of counterions across the cell membrane causes the apparent anomalous osmotic behavior. Quantitative agreement has been found between the anion shift predicted by the equation and that observed in response to osmotic gradients. The proposed mechanism appears to be operative in a variety of tissues and could provide an electrical transducer for osmotic signals.  相似文献   

18.
The thermodynamics of the alkaline transition which influences the spectral and redox properties of the type 1 copper center in phytocyanins has been determined spectroscopically. The proteins investigated include Rhus vernicifera stellacyanin, cucumber basic protein and its Met89Gln variant, and umecyanin, the stellacyanin from horseradish roots, along with its Gln95Met variant. The changes in reaction enthalpy and entropy within the protein series show partial compensatory behavior. Thus, the reaction free energy change (hence the pK a value) is rather variable. This indicates that species-dependent differences in reaction thermodynamics, although containing an important contribution from changes in the hydrogen-bonding network of water molecules in the hydration sphere of the protein (which feature enthalpy–entropy compensation), are to a large extent protein-based. The data for axial ligand variants are consistent with the hypothesis of a copper-binding His as the deprotonating residue responsible for this transition.  相似文献   

19.
Structure and dynamics of biomolecules in supercooled water assume a particular and distinct importance in the case of antifreeze glycoproteins (AFGPs), which function at sub-zero temperatures. To investigate whether any large-scale structural digressions in the supercooled state are correlated to the function of AFGPs, self-diffusion behavior of the AFGP8, the smallest AFGP is monitored as a function of temperature from 243 to 303 K using nuclear magnetic resonance (NMR) spectroscopy. The experimental results are compared with the hydrodynamic calculations using the viscosity of water at the same temperature range. In order to evaluate results on AFGP8, the smallest AFGP, constituting approximately two-thirds of the total AFGP fraction in fish blood serum, similar experimental and computational calculations were also performed on a set of globular proteins. These results show that even though the general trend of translational dynamics of AFGP is similar to that of the other globular proteins, AFGP8 appears to be more hydrated (approximately 30% increase in the bead radius) than the others over the temperature range studied. These results also suggest that local conformational changes such as segmental librations or hydrogen bond dynamics that are closer to the protein surface are more likely the determining dynamic factors for the function of AFGPs rather than any large-scale structural rearrangements.  相似文献   

20.
Balancing trade-offs between foraging and risk factors is a fundamental behavior that structures the spatial distribution of species. For African elephants Loxodonta africana, human pressures from poaching and conflict are primary drivers of species decline, but little is known about how elephants structure their spatial behavior in the face of human occupancy and predation. We seek to understand how elephants balance trade-offs between resource access, human presence and human predatory risk factors (poaching and conflict killing) in an unfenced, dynamic ecosystem where elephants persist primarily outside protected areas in community rangelands. We used tracking data from 101 elephants collected between 2001 and 2016. We investigated elephant behavior in response to landcover, topography, productivity, water, human features and human predation risk using third-order resource selection functions. We extended this analysis by employing a mixed-effects multinomial regression to identify temporal shifts in habitat use, and evaluated temporal shifts in movement patterns by estimating mean squared displacement across different productivity periods. Across periods, elephants displayed strong selection for productive areas and areas near water. Temporal shifts in habitat use showed that, during the dry period, elephants were clustered around permanent water sources where humans also congregated. At the onset of the wet period, a shift occurred where elephants moved away from permanent water and from permanent settlements towards seasonal water sources and seasonal settlements. Our findings indicate that foraging and water access are important limiting factors affecting elephants that potentially restrain their spatial responses to humans at the scale of our analysis. Given that pastoralists and elephants rely on the same resources, increasing human and livestock populations enhance pressure on shared resources and space in Africa's drylands. The long-term conservation of elephants will require approaches that reduce poaching as well as landscape level planning to prevent negative impacts from increasing competition for preferred resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号