首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glasses in the system xGd2O3·(100-x)[GeO2·V2O5] with 0 ≤ × ≤ 20 mol% have been prepared from the melt quenching method. In this paper, we investigated changes in germanium coordination number in gadolinium-vanadate-germanate glasses through molar volume analysis, measurements of densities, investigations of FTIR and UV-VIS spectroscopy, calculations of density functional theory (DFT). Analyzing the structural changes resulted from the IR spectra we found that the gadolinium ions have a pronounced affinity toward [VO4] structural units which contain non-bridging oxygens necessary for the charge compensation. The introduction of the excess of oxygen yields the formation of [VO5] structural units. This attains maximum value at 5 mol% Gd2O3, in agreement with the density measurements. Further, the addition of the surplus of oxygen implies the transformation of [VO5] to [VO4] structural units and the formation of VO4−3 orthovanadate structural units. The UV-VIS spectra show a broad UV absorption band located in the 300–500 nm region. These bands are assumed to originate from the combination of vanadium ions possibly present in the three states of valence. The presence of Ge-Ge wrong bonds attains its maximum values in the samples with x = 5 and 15 mol% Gd2O3 (bands centered in the 250–300 nm range). DFT calculations show the massive vibrations of the [VOn] structural units coupled with each other via [GeO6] and [GeO4] structural units. This leads to the splitting of the bridge modes and a multiplication of the number of these bands.  相似文献   

2.
In this study, a solid-phase extraction method combined with atomic absorption spectrometry for extraction, preconcentration, and determination of iron (Fe3+), copper (Cu2+), and lead (Pb2+) ions at trace levels in water samples has been reported. The influences of effective parameters such as flow rate, pH, eluent conditions (type, volume, and concentration), sample volumes, and interference of matrix ions on metal ions recoveries were studied. Under optimized conditions, the limits of detection were found in the range of 0.7–2.2 μg L−1, while preconcentration factors for Fe3+, Cu2+, and Pb2+ ions were found to be 166, 200, and 250, respectively, and loading half time (t 1/2) values were less than 2 min for all analyte ions. The proposed procedure was applied for the determination of metal ions in different water samples with recovery of >94.4% and relative standard deviation less than 4.4% for N = 5.  相似文献   

3.
 The synthesis, spectroscopic, and electrochemical properties of trans-[L(Pyr)(NH3)4RuII/III] (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, or 4-bnpy; L=H2O, Guo, dGuo, 1MeGuo, Gua, Ino, or G7-DNA) are reported. As expected, the Pyr ligand slows DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ relative to [(H2O)(NH3)5RuII]2+ and favors reduction of RuIII by about 150 mV. The pyridine ligand also promotes the disproportionation of RuIII to afford the corresponding complexes of RuII and, presumably, RuIV. For L=Ino, disproportionation follows the rate law: d[RuII]/dt=k 0[RuIII]+k 1[OH][RuIII], k 0=(2.7±0.7)×10–4 s–1 and k 1=70±1 M–1 s–1. Received: 11 May 1998 / Accepted: 3 March 1999  相似文献   

4.
 The oxidized Fe7S8 ferredoxin from Bacillus schlegelii, containing both [Fe3S4]+ and [Fe4S4]2+ clusters, has been investigated by 1H NMR spectroscopy. An extensive sequence-specific assignment of the hyperfine-shifted resonances has been obtained by making use of a computer-generated structural model. The pattern and the temperature dependence of the hyperfine shifts of the β-CH2 protons of the cysteines coordinating the [Fe3S4]+ cluster are rationalized in terms of magnetic interactions between the iron ions. The same approach holds for the hyperfine coupling with 57Fe. It is shown that the magnetic interactions are more asymmetric in Fe7S8 ferredoxins than in Fe3S4 ferredoxins. The NMR non-observability of the β-CH2 protons of coordinated cysteines in the one-electron-reduced form has been discussed. Received: 19 June 1996 / Accepted: 2 August 1996  相似文献   

5.
In caulonemal filaments of the moss, Physcomitrella patens, which had been incubated in darkness, 3 s irradiation with blue light (λmax 450 nm) at fluence rates of 100 μmol m−2 s−1 and above caused a transient␣increase in cytosolic calcium ion concentration, [Ca2+]cyt, which was both intensity- and time-dependent. Measurements of [Ca2+]cyt were made using moss transformed with the cDNA for apoaequorin and reconstituting the Ca2+-dependent photoprotein aequorin in the cytosol by incubation in coelenterazine.␣In response to blue light at fluence rates of 100–1000 μmol photons m−2 s−1, [Ca2+]cyt increased transiently from a basal level of approximately 50 nM to between 200 and 700 nM. Irradiation with red light did not evoke any measurable change in [Ca2+]cyt. The presence of calcium in the incubating medium was not required for the increase in [Ca2+]cyt to occur. A mutant strain, gad-139, was identified which required an irradiance of only 1 s to evoke a response. The kinetics showed a delay of approximately 6 s from the beginning of illumination before the beginning of the increase in [Ca2+]cyt. The data suggest that the activation of a photoreceptor rather than the direct opening of calcium channels is involved in this blue-light response. Received: 4 December 1997 / Accepted: 4 May 1998  相似文献   

6.
 DNA binding by trans-[(H2O)(Pyr)(NH3)4RuII]2+ (Pyr=py, 3-phpy, 4-phpy, 3-bnpy, 4-bnpy) is highly selective for G7 with K G=1.1×104 to 2.8×104, with the more hydrophobic Pyr ligands exhibiting slightly higher binding. A strong dependence on ionic strength indicates that ion-pairing with DNA occurs prior to binding. At μ=0.05, d[RuII-DNA]/dt=k[RuII][DNA], where k=0.17–0.21 M–1 s–1 with the various Pyr ligands. The air oxidation of [(py)(NH3)4RuII] n -DNA to [(py)(NH3)4RuIII] n -DNA at pH 6 occurs with a pseudo-first-order rate constant of k obs=5.6×10–4 s–1 at μ=0.1, T=25  °C. Strand cleavage of plasmid DNA appears to occur by both Fenton/Haber-Weiss chemistry and by base-catalyzed routes, some of which are independent of oxygen. Base-catalyzed cleavage is more efficient than O2 activation at neutral pH and involves the disproportionation of covalently bound RuIII and, in the presence of O2, Ru-facilitated autoxidation to 8-oxoguanine. Disproportionation of [py(NH3)4RuIII] n -DNA occurs according to the rate law: d[RuII–GDNA]/dt=k 0[RuIII–GDNA]+k 1[RuIII–GDNA][OH], where k 0=5.4×10–4 s–1 and k 1=8.8 M–1 s–1 at 25  °C, μ=0.1. The appearance of [(Gua)(py)(NH3)4RuIII] under argon, which occurs according to the rate law: d[RuIII–G]/dt=k 0[RuIII–GDNA]+k 1[OH][RuIII–GDNA] (k 0=5.74×10–5 s–1, k 1=1.93×10–2 M–1 s–1 at T=25  °C, μ=0.1), is consistent with lysis of the N-glycosidic bond by RuIV-induced general acid hydrolysis. In air, the ratio of [Ru-8-OG]/[Ru-G] and their net rates of appearance are 1.7 at pH 11, 25  °C. Small amounts of phosphate glycolate indicate a minor oxidative pathway involving C4′ of the sugar. In air, a dynamic steady-state system arises in which reduction of RuIV produces additional RuII. Received: 11 November 1998 / Accepted: 3 March 1999  相似文献   

7.
In this study, dried and humid fruiting bodies of Tremella fuciformis and Auricularia polytricha were examined as cost-effective biosorbents in treatment of heavy metals (Cd2+, Cu2+, Pb2+, and Zn2+) in aqueous solution. The humid T. fuciformis showed the highest capacity to adsorb the four metals in the multi-metal solutions. The Pb2+ adsorption rates were 85.5%, 97.8%, 84.8%, and 91.0% by dried T. fuciformis, humid T. fuciformis, dried A. polytricha, and humid A. polytricha, respectively. The adsorption amount of Pb2+ by dried and humid T. fuciformis in Cd2+ + Pb2+, Cu2+ + Pb2+, Pb2+ + Zn2+, Cd2+ + Cu2+ + Pb2+, and Cd2+ + Zn2+ + Pb2+ solutions were not lower than that in Pb2+ solutions. The results suggested that in humid T. fuciformis, Cd2+, Cu2+, and Zn2+ promoted the Pb2+ adsorption by the biomass. In the multi-metal solutions of Cd2+ + Cu2+ + Pb2+ + Zn2+, the adsorption amount and rates of the metals by all the test biosorbents were in the order of Pb2+ > Cu2+ > Zn2+ > Cd2+. Compared with the pseudo first-order model, the pseudo second-order model described the adsorption kinetics much better, indicating a two-step biosorption process. The present study confirmed that fruiting bodies of the jelly fungi should be useful for the treatment of wastewater containing Cd2+, Cu2+, Pb2+, and Zn2+.  相似文献   

8.
 Four reductions of the R2 subunit of mouse ribonucleotide reductase have been studied and found to exhibit different behaviour from that of Escherichia coli R2. An important difference is that there is no stable met-R2 (Fe2 II I) form of mouse R2. With hydroxyurea, hydrazine and hydroxylamine uniphasic kinetics are observed for the combined reduction of radical Tyr ˙ and Fe2 II I components to tyrosine and Fe2 II respectively. The rate constants, determined at 370 nm (emphasising FeIII decay) and 417 nm (emphasising Tyr ˙ decay), differ by factors of 2–3, allowing some mechanistic features to be defined. The studies with hydrazine are particularly important. In the case of E. coli R2, a first phase corresponding to two-equivalent reduction of the met-R2 component has been observed [18]. It is likely that the four times slower second phase reaction of active E. coli R2 also corresponds to the Fe2 II I → Fe2 II change and is followed by fast intramolecular Fe2 II reduction of the higher potential Tyr ˙. The latter changes are believed to hold also for (active) mouse R2. The FeIIFeIII semi forms have been detected at low levels by EPR for mouse R2 (9%) and E. coli (∼5%) in previous studies. Further substrate reduction of FeIIFeIII occurs at a comparable rate to account for the transient behaviour of FeIIFeIII. For mouse R2 the combined FeIII decay processes (which we are unable to separate) give smaller uniphasic rate constants at 370 nm than at 417 nm. A fitted-base-line (FBL) treatment of absorbance changes at 417 nm targets more closely the Tyr ˙ decay as a means of monitoring the rate-determining step. The FBL method gives rate constants k (M–1 s–1) at 25  °C and pH 7.5 for hydroxyurea (1.46), hydrazine (0.163) and hydroxylamine (4.4). Surprisingly, phenylhydrazine, with a less strong reduction potential (0.25 V), gives a substantially faster reduction of the Tyr ˙ as the only redox step (rate constant 27 M–1 s–1). In this case a slower second phase at 370 nm is independent of reductant and corresponds to rate-controlling release of FeIII. Overall the results indicate a more reactive redox centre for mouse R2 and help develop further an understanding of factors affecting the reactivity of R2. Received: 11 October 1996 / Accepted: 11 February 1997  相似文献   

9.
 Dithionite has been found to reduce directly (without mediators) the Escherichia coli R2 subunit of ribonucleotide reductase. With dithionite (∼10 mM) in large excess, the reaction at 25  °C is complete in ∼10 h. Preparations of E. coli R2 have an FeIII 2 (met-R2) component in this work at ∼40% levels, alongside the fully active enzyme FeIII 2 . . . Tyr*, which has a tyrosyl radical at Tyr-122. In the pH range studied (7–8) the kinetics are biphasic. Rate laws for both phases give [S2O4 2–] and not [S2O4 2–]1/2 dependencies, and saturation kinetics are observed for the first time in R2 studies. No dependence on pH was detected. The kinetics (25  °C) of the first phase are reproduced in separate experiments using only met-R2, with association of S2O4 2– to met-R2, K=330 M–1, occurring prior to electron transfer, k et=4.8×10–4 s–1, I=0.100 M (NaCl). The second phase assigned to the reaction of FeIII 2 . . . Tyr* with S2O4 2– gives K=800 M–1 and k et=5.6×10–5 s–1. Bearing in mind the substantially smaller reduction potential for FeIII 2 compared to Tyr*, this is a quite remarkable finding, with implications similar to those already reported for the reaction of R2 with hydrazine, but with additional information provided by the saturation kinetics. The similarity in rates for the two phases (∼fourfold difference) suggests that reduction of FeIII 2 is occurring in both cases, and since S2O4 2– is involved a two-equivalent change is proposed with the formation of FeII 2 . . . Tyr* in the case of active R2. As a sequel to the second phase, intramolecular reduction of the strongly oxidising Tyr* by the FeII 2 is rapid, and further decay of FeIIFeIII is also fast. There is no stable mouse met-R2 form, and the single-phase reaction with dithionite gives saturation kinetics with K=208 M–1 and k et=1.7±10–3 s–1. Mechanistic implications, including the applicability of a pathway for electron transfer via FeA, are considered. Received: 25 February 1998 / Received: 20 August 1998  相似文献   

10.
Changes in free Ca2+ in sieve-tube sap have been proposed to be important in the regulation of phloem transport, and Ca2+-activated protein kinase activity has been described in phloem exudate (S.A. Avdiushko et al. 1997 J Plant Physiol 150: 552–559). Using atomic absorption spectrometry, we have determined that the total Ca2+ concentration in sieve-tube sap from Ricinus seedlings containing the endosperm is about 100 μM (range 80–150 μM). We used three independent methods to determine the free calcium ion concentration in the phloem sap ([Ca2+]p). The first method was to calculate [Ca2+]p from the total Ca2+ concentration, in combination with the binding constants and concentrations of the ionic solutes in phloem sap. The resultant estimate of [Ca2+]p was 63 μM. The second method used the Ca-specific fluorescent dye 2-[2-(5-carboxy)oxazole]-5-hydroxy-6-aminobenzofuran-N,N,O-triacetic-acid (FURAPTRA) on exuded sieve-tube sap. Although the sap interfered severely with the fluorescence properties of the dye, Ca2+ titrations enabled a value of [Ca2+]p = 20 μM to be deduced. The third method used Ca2+-selective microelectrodes on exuded sap samples, which gave an average value for [Ca2+]p = 13 μM. No significant change in this value was observed during the sap exudation period. The Ca2+ buffer capacity was determined and the result of about 0.6 mmol · l−1 · pCa−1 displayed excellent agreement with the measured values of free and total Ca2+ concentration in sieve-tube sap. Since the measured values for free Ca2+ are 20- to 100-fold higher than those usually reported for the cytosol of a range of plant cells in resting conditions, it is concluded that either regulation of [Ca2+]p is of limited physiological importance, or that the Ca2+-dependent proteins respond only to relatively high [Ca2+]p. The implications for regulation of cytosolic free Ca2+ in symplastically connected companion cells is discussed. Received: 15 February 1998 / Accepted: 14 March 1998  相似文献   

11.
The resonance scattering spectral probe for Pb2+ was obtained using aptamer-modified AuPd Nanoalloy. In the pH 7.0 Na2HPO4–NaH2PO4 buffer solution, the aptamer interacted with AuPd nanoalloy particles to form stable aptamer-AuPd nanoalloy probe for Pb2+ that is stable in high concentration of salt. The probe combined with Pb2+ ions to form a G-quadruplex and to release AuPd nanoalloy particles that aggregate to form big particles which led the resonance scattering (RS) intensity enhancing. The reaction solution was filtered by 0.15 μm membrane to obtain the filtration containing aptamer-AuPd nanoalloy probe that has strong catalytic effect on the electrodeless nickel particle plating reaction between Ni(II) and PO23− that exhibited a strong RS peak at 508 nm. The RS intensity at 508 nm decreased when the Pb2+ concentration increased. The decreased intensity (ΔI 508nm) is linear to the concentration of 0.08–42 nM Pb2+, with regress equation of DI508nm = 16.3 c + 1.5 \Delta {I_{{5}0{\rm{8nm}}}} = {16}.{3}\,c + {1}.{5} , correlation coefficient of 0.9965, and detection limit of 0.04 nM Pb2+. The RS assay was applied to the analysis of Pb2+ in wastewater, with satisfactory results.  相似文献   

12.
 The stability constants of the 1 : 1 complexes formed between Pb2+ and several simple phosphate monoesters (4-nitrophenyl phosphate, phenyl phosphate, d-ribose 5-monophosphate, n-butyl phosphate) or phosphonate ligands (methylphosphonate, ethylphosphonate) (R-PO2– 3) were determined by potentiometric pH titrations in aqueous solution (25  °C;I=0.1 M, NaNO3). The construction of a log K P P b b(R-PO3) versus pK H H(R-PO3) plot for the mentioned ligand systems results in a straight line on which the data pairs (the corresponding equilibrium constants were also measured) for uridine 5′-monophosphate (UMP2–) and thymidine 5′-monophosphate (dTMP2–) also fall; this result shows that in the Pb2+ complexes of UMP2– and dTMP2– the nucleobase residues do not interfere, in neither a positive nor a negative way, with the binding of Pb2+ and that the stability of all these complexes is determined by the basicity of the phosph(on)ate group. The mentioned straight-line correlation (as defined by the least-squares procedure) allowed us to demonstrate (via constants determined now) that the stability of the Pb2+ complex of cytidine 5′-monophosphate (CMP2–) is also solely determined by the basicity of its phosphate group. A similar evaluation, based on literature data, for the Pb(HPO4) complex reveals that its stability corresponds closely to the expectations based on the Pb(R-PO3) data, though there is a slight hint that Pb(HPO4) may be somewhat more stable [which would be in agreement with previous observations of other M(HPO4) complexes]; clearly, more such comparisons are possible with the reference line given now. Based on the stability constants of the monoprotonated Pb(H;CMP)+ complex and the Pb(cytidine)2+ species (which was also measured now), it is concluded that in Pb(H;CMP)+ the proton is located at the phosphate group and Pb2+ mainly at the N3/(C2)O site of the cytosine residue. Regarding nucleic acids in solution, it is further concluded that the affinity of Pb2+ towards the negatively mono-charged phosphate unit, —O—P(O)2 —O—, of a nucleic acid backbone is comparable to that of the cytosine moiety, the affinity towards other nucleobase residues being smaller. This information may prove helpful regarding the properties of lead ribozymes. Received: 16 April 1999 / Accepted: 2 June 1999  相似文献   

13.
At 10 mM, Cu+ was highly protective against killing of spores of Bacillus megaterium ATCC 19213 by H2O2, while at higher concentrations, from 15–100 mM, killing was augmented. In contrast, Cu2+, Fe2+, Fe3+, Co2+ or Co3+ ions acted only protectively. Cu+ itself was sporicidal in the absence of H2O2 or ascorbate, and its sporicidal action did not depend on generation of highly reactive oxygen species. It appeared that killing involved either inhibition of germination or copper toxicity to germinated cells in that Cu+-inactivated spores did not germinate readily but chemical decoating of the cells prior to plating on a solid medium resulted in reversal of the sporicidal effect. Received 12 July 1996/ Accepted in revised form 03 November 1996  相似文献   

14.
4 S4]3 +  and the reduced [Fe4S4]2 +  clusters in the high-potential iron protein I from Ectothiorhodospira halophila were measured in a temperature range from 5 K to 240 K. EPR measurements and 57Fe electron-nuclear double resonance (ENDOR) experiments were carried out with the oxidized protein. In the oxidized state the cluster has a net spin S = 1/2 and is paramagnetic. As common in [Fe4S4]3 +  clusters, the M?ssbauer spectrum was simulated with two species contributing equally to the absorption area: two Fe3 +  atoms couple to the “ferric-ferric” pair, and one Fe2 +  and one Fe3 +  atom give the “ferric-ferrous pair”. For the simulation of the M?ssbauer spectrum, g-values were taken from EPR measurements. A-tensor components were determined by 57Fe ENDOR experiments that turned out to be a necessary source of estimating parameters independently. In order to obtain a detailed agreement of M?ssbauer and ENDOR data, electronic relaxation has to be taken into account. Relaxing the symmetry condition in a way that the electric field gradient tensor does not coincide with g- and A-tensors yielded an even better agreement of experimental and theoretical M?ssbauer spectra. Spin-spin and spin-lattice relaxation times were estimated by pulsed EPR; the former turned out to be the dominating mechanism at T = 5 K. Relaxation times measured by pulsed EPR and obtained from the M?ssbauer fit were compared and yield nearly identical values. The reduced cluster has one additional electron and has a diamagnetic (S = 0) ground state. All the four irons are indistinguishable in the M?ssbauer spectrum, indicating a mixed-valence state of Fe2.5 +  for each. Received: 15 February 1999 / Accepted: 31 August 1999  相似文献   

15.
A superoxide dismutase (SOD) was characterized from Beauveria bassiana, a fungal entomopathogen widely applied to insect control. This 209-aa enzyme (BbSod2) showed no more than 71% sequence identity to other fungal Mn-SODs, sharing all conserved residues with the Mn-SOD family and lacking a mitochondrial signal. The SOD activity of purified BbSod2 was significantly elevated by Mn2+, suppressed by Cu2+ and Zn2+ but inhibited by Fe3+. Overexpressing the enzyme in a BbSod2-absent B. bassiana strain enhanced its SOD activity (107.2 ± 6.1 U mg−1 protein) by 4–10-fold in different transformants analyzed. The best BbSod2-transformed strain with the SOD activity of 1,157.9 ± 74.7 U mg−1 was 93% and 61% more tolerant to superoxide-generating menadione in both colony growth (EC50 = 2.41 ± 0.03 versus 1.25 ± 0.01 mM) and conidial germination (EC50 = 0.89 ± 0.06 versus 0.55 ± 0.07 mM), and 23% more tolerant to UV-B irradiation (LD50 = 0.49 ± 0.02 versus 0.39 ± 0.01 J cm−2). Its virulence to Spodoptera litura larvae was enhanced by 26% [LT50 = 4.5 (4.2–4.8) versus 5.7 (5.2–6.4) days]. Our study highlights for the first time that the Mn2+-cofactored, cytosolic BbSod2 contributes significantly to the virulence and stress tolerance of B. bassiana and reveals possible means to improving field persistence and efficacy of a fungal formulation by manipulating the antioxidant enzymes of a candidate strain.  相似文献   

16.
 Rubrerythrin (Rr) is the trivial name given to a non-heme iron protein of unknown function which has been found in anaerobic sulfate-reducing bacteria. Rr is unique in containing both rubredoxin-type FeS4 and diiron-oxo sites in the same protein. The results described here demonstrate for the recombinant protein that: (a) Rr catalyzes oxidation of Fe2+ to Fe3+ by O2, i.e., Rr has ferroxidase activity, (b) both FeS4 and diiron domains of the Rr protein are required for ferroxidase activity, (c) with excess Fe2+ and O2 the initial rate of this oxidation appears to be first order in [Rr] and independent of starting [Fe2+] above 30 μM, (d) the Fe3+ is produced in a form which is capable of rapid incorporation into the iron-binding site of ovotransferrin, and (e) the ferroxidase activity of Rr is comparable to that of published ferroxidase activities of apoferritins on a subunit basis. Ferroxidase activity of Rr was monitored either by the rate of increase in absorbance at 315 nm (which lies near an isosbestic point for oxidized and reduced Rr) or by using apoovotransferrin as Fe3+ acceptor, and measuring the rate and extent of diferric transferrin formation at 460 nm. No polyironoxyhydroxide aggregates appeared to associate with Rr after the ferroxidase reaction. A truncated form of Rr containing only the diiron domain had little or no ferroxidase activity. Rr could function as one component of a set of enzymes which channels the reaction products of O2 and Fe2+ onto a non-toxic pathway during transient exposure of the bacteria to air.  相似文献   

17.
 Catalytic activation of Escherichia coli ribonuclease H by a series of inert chromium complexes [Cr(NH3)6-x(H2O)x]3+ (x = 0–6) that bear water and ammine ligands in well-defined geometries in the inner coordination shell has been examined. Such complexes are observed to function by transition state stabilization. The importance of hydrogen bonding and electrostatics to catalytic activation of this reaction were quantitatively evaluated. The availability of [Cr(NH3)6-x(H2O)x]3+ complexes of varying coordination geometry also affords a probe of the preferred structural arrangement for hydrogen-bonding interactions. Under the solution conditions employed, a facial array of bound water molecules is required to promote catalysis, as expected from comparison with the ligation of the enzyme-bound Mg2+–cofactor. These results exclude a structural role for the essential metal cofactor. Hydrogen bonding appears to be the dominant stabilizing interaction. In the absence of bound water ligands (for example, in the specific cases of Cr(NH3)6 3+ and Co(NH3)6 3+), hydrogen bond stabilization is precluded: however, catalysis is observed as a result of the increased positive charge on the complex. Apparently the trivalent charge offsets the poorer hydrogen bonding abilities of the ammine ligands. Received: 11 June 1996 / Accepted: 31 July 1996  相似文献   

18.
Using Ca2+-selective microelectrodes, the concentration of free calcium ([Ca2+]) in the cytosol has been measured in root hair cells of Medicago sativa L. in the presence of nodulation (Nod) factors. Growing root hairs of M. sativa displayed a steep apical [Ca2+] gradient, i.e. 604–967 nM in the tip compared with 95–235 nM in the basal region. When tested within the first 5 to 10 μm of the tip, addition of NodRm-IV(C16:2,S) decreased the cytosolic [Ca2+], whereas an increase was observed when tested behind the tip. Overall, this led to a partial dissipation of the [Ca2+] gradient. The Ca2+ response was specific: it was equally well observed in the presence of NodRm-IV(Ac,C16:2,S), reduced with NodRm-IV(C16:0,S), but not with chitotetraose, the nonactive glucosamine backbone. In contrast to growing root hairs, non-growing root hairs without a tip-to-base cytosolic [Ca2+] gradient responded to NodRm-IV(C16:2,S) with an increase in cytosolic [Ca2+] at the tip as well as at the root hair base. We suggest that the response to Nod factors depends on the stage of development of the root hairs, and that changes in cytosolic [Ca2+] may play different roles in Nod-factor signaling: changes of cytosolic [Ca2+] in the apical part of the root hair may be related to root hair deformation, while the increase in [Ca2+] behind the tip may be essential for the amplification of the Nod signal, for its propagation and transduction to trigger downstream events. Received: 5 January 1999 / Accepted: 14 April 1999  相似文献   

19.
Two strains of Chlorella vulgaris Beijerinck isolated from two different sites in Laguna de Bay, Philippines, were studied for their resistance and ability to remove four metal ions, i.e., Cu2+, Cr6+, Pb2+, and Cd2+ added separately in BG-11 growth medium. The growth of the two strains was severely inhibited at 2 mg.L−1 of Cu2+, 5 mg.L−1 of Cr6+, 8 mg.L−1 of Pb2+, and 10 mg.L−1 of Cd2+. However, the two strains exhibited different EC50 values for the same metal ion. The WB strain had a significantly higher resistance (p < 0.01) for Cd2+ and Cr6+ compared with the SB strain, while the SB strain had significantly higher resistance (p < 0.01) for Cu2+ compared with the WB strain. On the other hand, the two strains behaved differently in their capacity to remove the metal ions in BG-11 medium containing 1.0 mg.L−1 of the three metal ions, except for Cu2+, which was added at 0.1 mg.L−1. The WB strain showed the highest removal of Cd2+ at 70.3% of total, followed by Pb2+ at 32%, while the SB strain exhibited the highest removal of Pb2+ at 48.7% followed by Cd2+ at 40.7% of the total. Both strains showed the least removal of Cr6+ at 28% and 20.8% of the total for the WB and SB strains respectively. The percentage removal for Cu2+ was 50.7% and 60.8% for the WB and SB strains respectively. After 12 days of incubation, both strains showed that a greater percentage of the metal ions removed were accumulated intracellularly than adsorbed at a ratio of at least 2:1. Both strains manifested the same cytological deformities, like a loss of pyrenoids at 10 mg.L−1 in all four metal ions. Discoloration and disintegration of chloroplasts were observed at 1.0 mg.L−1 in Cu2+ and 5 mg.L−1 in Cr6+. The nonrelease of autospores from the mother cells was observed at 10 mg.L−1 in Cu2+ and Cr6+. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

20.
The heat flux of Tetrahymena thermophila BF5 during growth and the effects of La3+ and Ca2+ on them were investigated with microcalorimetry; simultaneously, morphological changes of T. thermophila were obtained by light microscope. La3+ in low concentration (0–5.0 × 10–4 mol/l) remarkably stimulated T. thermophila metabolism, but high dose of La3+ (5.8–8.6 × 10–4 mol/l) restrained it in a linear manner with IC50 being 7.2 × 10–4 mol/l. In contrast, low concentration of Ca2+ did not manifest obvious stimulation on T. thermophila metabolism; moreover, the IC50 of Ca2+ was much higher than that of La3+. Low concentration of La3+ did not lead to changes in appearance of T. thermophila, but low dose of Ca2+ clearly promoted the cell proliferation. In addition, the morphological changes of T. thermophila evoked by high concentrations of La3+ and Ca2+ were consistent with relevant microcalorimetric results. It is concluded that La and Ca influence T. thermophila via different pathways, and La represents toxic action rather than Ca analogy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号