首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
GNA2132 (Genome-derived Neisseria Antigen 2132) is a surface-exposed lipoprotein discovered by reverse vaccinology and expressed by genetically diverse Neisseria meningitidis strains (Pizza et al. 2000). The protein induces bactericidal antibodies against most strains of Meningococccus and has been included in a multivalent recombinant vaccine against N. meningitidis serogroup B. Structure determination of GNA2132 is important for understanding the antigenic properties of the protein in view of increased efficiency vaccine development. We report practically complete 1H, 13C and 15N assignment of the detectable spectrum of a highly conserved C-terminal region of GNA2132 (residues 245–427) in micellar solution, a medium used to improve the spectral quality. The first 32 residues of our construct up to residue 277 were not visible in the spectrum, presumably because of line broadening due to solvent and/or conformational exchange. Secondary structure predictions based on chemical shift information indicate the presence of an all β-protein with eight β strands.  相似文献   

2.
GNA1946, a conserved outer membrane lipoprotein from Neisseria meningitidis, has been identified as a candidate antigen for an urgently needed broad-spectrum meningococcal vaccine. It has been predicted to be a periplasmic receptor in the d-methionine uptake ABC transporter system. The crystal structure of GNA1946 was solved by the single-wavelength anomalous dispersion (SAD) method to a resolution of 2.25 Å, and it reveals a Venus flytrap-like structure. GNA1946 consists of two globular lobes connected by a hinge region. Surprisingly, the structure showed an l-methionine bound within the cleft between the lobes. A comparison of GNA1946 with two other outer membrane lipoproteins, the l-methionine-binding Tp32 from Treponema pallidum and the dipeptide GlyMet-binding protein Pg110 from Staphylococcus aureus, revealed that although these three proteins share low sequence similarities, there is a high degree of structural conservation and similar substrate-binding frameworks. Our results reveal that GNA1946 is an l-methionine binding lipoprotein in the outer membrane, and should function as an initial receptor for ABC transporters with high affinity and specificity. The GNA1946 structure reported here should provide a valuable starting point for the development of a broad-spectrum meningococcal vaccine.  相似文献   

3.

Background  

It has been speculated that the γ-glutamyl transpeptidase (ggt) gene is present only in Neisseria meningitidis and not among related species such as Neisseria gonorrhoeae and Neisseria lactamica, because N. meningitidis is the only bacterium with GGT activity. However, nucleotide sequences highly homologous to the meningococcal ggt gene were found in the genomes of N. gonorrhoeae isolates.  相似文献   

4.
Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.  相似文献   

5.
Neisseria meningitidis, a human‐specific bacterial pathogen causes bacterial meningitis by invading the meninges (outer lining) of central nervous system. It is the polysaccharide present on the bacterial capsid that distinguishes various serogroups of N. meningitidis and can be utilized as antigens to elicit immune response. A computational approach identified candidate T‐cell epitopes from outer membrane proteins Por B of N. meningitidis (MC58): (273KGLVDDADI282 in loop VII and 170GRHNSESYH179 in loop IV) present on the exposed surface of immunogenic loops of class 3 outer membrane proteins allele of N. meningitidis. One of them, KGLVDDADI is used here for designing a diagnostic tool via molecularly imprinted piezoelectric sensor (molecularly imprinted polymer‐quartz crystal microbalance) for N. meningitidis strain MC58. Methacrylic acid, ethylene glycol dimethacrylate and azoisobutyronitrile were used as functional monomer, cross‐linker and initiator, respectively. The epitope can be simultaneously bound to methacrylic acid and fitted into the shape‐selective cavities. On extraction of epitope sequence from thus grafted polymeric film, shape‐selective and sensitive sites were generated on electrochemical quartz crystal microbalance crystal, ie, known as epitope imprinted polymers. Imprinting was characterized by atomic force microscopy images. The epitope‐imprinted sensor was able to selectively bind N. meningitidis proteins present in blood serum of patients suffering from brain fever. Thus, fabricated sensor can be used as a diagnostic tool for meningitis disease.  相似文献   

6.
Clusters of Neisseria meningitidis (Nm) urethritis among primarily heterosexual males in multiple US cities have been attributed to a unique non‐encapsulated meningococcal clade (the US Nm urethritis clade, US_NmUC) within the hypervirulent clonal complex 11. Resistance to antimicrobial peptides (AMPs) is a key feature of urogenital pathogenesis of the closely related species, Neisseria gonorrhoeae. The US_NmUC isolates were found to be highly resistant to the model AMP, polymyxin B (PmB, MICs 64–256 µg ml–1). The isolates also demonstrated stable subpopulations of heteroresistant colonies that showed near total resistant to PmB (MICs 384–1024 µg ml–1) and colistin (MIC 256 µg ml–1) as well as enhanced LL‐37 resistance. This is the first observation of heteroresistance in N. meningitidis. Consistent with previous findings, overall PmB resistance in US_NmUC isolates was due to active Mtr efflux and LptA‐mediated lipid A modification. However, whole genome sequencing, variant analyses and directed mutagenesis revealed that the heteroresistance phenotypes and very high‐level AMP resistance were the result of point mutations and IS1655 element movement in the pilMNOPQ operon, encoding the type IV pilin biogenesis apparatus. Cross‐resistance to other classes of antibiotics was also observed in the heteroresistant colonies. High‐level resistance to AMPs may contribute to the pathogenesis of US_NmUC.  相似文献   

7.
We report the nearly complete 1H, 13C and 15N resonance assignments of the oxidized form (Cys67–Cys70) of the N-terminal domain of PilB from Neisseria meningitidis. Secondary structure determination using CSI method and TALOS leads mainly to the prediction of 7 α-helical and 5 β-sheet parts.  相似文献   

8.
Pili have been shown to play an essential role in the adhesion of Neisseria meningitidis to epithelial cells. However, among piliated strains, both inter- and intrastrain variability exist with respect to their degree of adhesion to epithelial cells in vitro (Virji et al., 1992). This suggests that factors other than the presence of pili per se are involved in this process. The N. meningitidis pilin subunit undergoes extensive antigenic variation. Piliated low- and high-adhesive derivatives of the same N. meningitidis strain were selected and the nucleotide sequence of the pilin gene expressed in each was determined. The highly adhesive derivatives had the same pilin sequence. The alleles encoding the pilin subunit of the low-adhesive derivatives were completely different from the one found in the high-adhesive isolates. Using polyclonal antibodies raised against one hyperadhesive variant, it was confirmed that the low-adhesive piliated derivatives expressed pilin variants antigenically different from the highly adhesive strains. The role of antigenic variation in the adhesive process of N. meningitidis was confirmed by performing allelic exchanges of the pilE locus between low-and high-adhesive isolates. Antigenic variation has been considered a means by which virulent bacteria evade the host immune system. This work provides genetic proof that a bacterial pathogen, N. meningitidis, can use antigenic variation to modulate their degree of virulence.  相似文献   

9.

Background  

The multilocus variable-number tandem repeat (VNTR) analysis (MLVA) technique has been developed for fine typing of many bacterial species. The genomic sequences of Neisseria meningitidis strains Z2491, MC58 and FAM18 have been available for searching potential VNTR loci by computer software. In this study, we developed and evaluated a MLVA method for molecular subtyping and phylogenetic analysis of N. meningitidis strains.  相似文献   

10.
GNA2091 of Neisseria meningitidis is a lipoprotein of unknown function that is included in the novel 4CMenB vaccine. Here, we investigated the biological function and the subcellular localization of the protein. We demonstrate that GNA2091 functions in the assembly of outer membrane proteins (OMPs) because its absence resulted in the accumulation of misassembled OMPs. Cell fractionation and protease accessibility experiments showed that the protein is localized at the periplasmic side of the outer membrane. Pulldown experiments revealed that it is not stably associated with the β-barrel assembly machinery, the previously identified complex for OMP assembly. Thus, GNA2091 constitutes a novel outer membrane-based lipoprotein required for OMP assembly. Furthermore, its location at the inner side of the outer membrane indicates that protective immunity elicited by this antigen cannot be due to bactericidal or opsonic activity of antibodies.  相似文献   

11.
Galectin‐3 is expressed and secreted by immune cells and has been implicated in multiple aspects of the inflammatory response. It is a glycan binding protein which can exert its functions within cells or exogenously by binding cell surface ligands, acting as a molecular bridge or activating signalling pathways. In addition, this lectin has been shown to bind to microorganisms. In this study we investigated the interaction between galectin‐3 and Neisseria meningitidis, an important extracellular human pathogen, which is a leading cause of septicaemia and meningitis. Immunohistochemical analysis indicated that galectin‐3 is expressed during meningococcal disease and colocalizes with bacterial colonies in infected tissues from patients. We show that galectin‐3 binds to N. meningitidis and we demonstrate that this interaction requiresfull‐length, intact lipopolysaccharide molecules. We found that neither exogenous nor endogenous galectin‐3 contributes to phagocytosis of N. meningitidis; instead exogenous galectin‐3 increases adhesion to monocytes and macrophages but not epithelial cells. Finally we used galectin‐3 deficient (Gal‐3?/?) mice to evaluate the contribution of galectin‐3 to meningococcal bacteraemia. We found that Gal‐3?/? mice had significantly lower levels of bacteraemia compared with wild‐type mice after challenge with live bacteria, indicating that galectin‐3 confers an advantage to N. meningitidis during systemic infection.  相似文献   

12.

Background  

Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. In general, most of the recent work on N. meningitidis focuses on potential antigens and their functions, immunogenicity, and pathogenicity mechanisms. Very little work has been carried out on Neisseria primary metabolism over the past 25 years.  相似文献   

13.

Background  

Various typing methods have been developed for Neisseria gonorrhoeae, but none provide the combination of discrimination, reproducibility, portability, and genetic inference that allows the analysis of all aspects of the epidemiology of this pathogen from a single data set. Multilocus sequence typing (MLST) has been used successfully to characterize the related organisms Neisseria meningitidis and Neisseria lactamica. Here, the same seven locus Neisseria scheme was used to characterize a diverse collection of N. gonorrhoeae isolates to investigate whether this method would allow differentiation among isolates, and to distinguish these three species.  相似文献   

14.

Background  

Survival of the human pathogen, Neisseria meningitidis, requires an effective response to oxidative stress resulting from the release of hydrogen peroxide by cells of the human immune system. In N. meningitidis, expression of catalase, which is responsible for detoxifying hydrogen peroxide, is controlled by OxyR, a redox responsive LysR-type regulator. OxyR responds directly to intracellular hydrogen peroxide through the reversible formation of a disulphide bond between C199 and C208 in the regulatory domain of the protein.  相似文献   

15.
The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure.  相似文献   

16.

Background  

Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependant on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion.  相似文献   

17.

Background  

Fine tuning expression of genes is a prerequisite for the strictly human pathogen Neisseria meningitidis to survive hostile growth conditions and establish disease. Many bacterial species respond to stress by using alternative σ factors which, in complex with RNA polymerase holoenzyme, recognize specific promoter determinants. σE, encoded by rpoE (NMB2144) in meningococci, is known to be essential in mounting responses to environmental challenges in many pathogens. Here we identified genes belonging to the σE regulon of meningococci.  相似文献   

18.
Deoxyribonucleate (DNA) preparations were extracted from Neisseria meningitidis (four isolates from spinal fluid and blood) and N. gonorrhoeae strains, all of which were resistant to sulfadiazine upon primary isolation. These DNA preparations, together with others from in vitro mutants of N. meningitidis and N. perflava, were examined in transformation tests by using as recipient a drug-susceptible strain of N. meningitidis (Ne 15 Sul-s Met+) which was able to grow in a methionine-free defined medium. The sulfadiazine resistance typical of each donor was introduced into the uniform constitution of this recipient. Production of p-aminobenzoic acid was not significantly altered thereby. Transformants elicited by DNA from the N. meningitidis clinical isolates were resistant to at least 200 μg of sulfadiazine/ml, and did not show a requirement for methionine (Sul-r Met+). DNA from six strains of N. gonorrhoeae, which were isolated during the period of therapeutic use of sulfonamides, conveyed lower degrees of resistance and, invariably, a concurrent methionine requirement (Sul-r/Met). The requirement of these transformants, and that of in vitro mutants selected on sulfadiazine-agar, was satisfied by methionine, but not by vitamin B12, homocysteine, cystathionine, homoserine, or cysteine. Sul-r Met+ and Sul-r/Met loci could coexist in the same genome, but were segregated during transformation. On the other hand, the dual Sul-r/Met properties were not separated by recombination, but were eliminated together. DNA from various Sul-r/Met clones tested against recipients having nonidentical Sul-r/Met mutant sites yielded Sul-s Met+ transformants. The met locus involved is genetically complex, and will be a valuable tool for studies of genetic fine structure of members of Neisseria, and of genetic homology between species.  相似文献   

19.

Background  

The NMB0736 gene of Neisseria meningitidis serogroup B strain MC58 encodes the putative nitrogen regulatory protein, IIANtr (abbreviated to NM-IIANtr). The homologous protein present in Escherichia coli is implicated in the control of nitrogen assimilation. As part of a structural proteomics approach to the study of pathogenic Neisseria spp., we have selected this protein for structure determination by X-ray crystallography.  相似文献   

20.
Neisseria meningitidis, a gram negative bacterium, is the leading cause of bacterial meningitis and severe sepsis. Neisseria meningitidis genome contains 2,160 predicted coding regions including 1,000 hypothetical genes. Re-annotation of N. meningitidis hypothetical proteins identified nine putative peptidases. Among them, the NMB1620 protein was annotated as LD-carboxypeptidase involved in peptidoglycan recycling. Structural bioinformatics studies of NMB1620 protein using homology modeling and ligand docking were carried out. Structural comparison of substrate binding site of LD-carboxypeptidase was performed based on binding of tetrapeptide substrate ‘l-alanyl-d-glutamyl-meso-diaminopimelyl-d-alanine’. Inspection of different subsite-forming residues showed changeability in the S1 subsite across different bacterial species. This variability was predicted to provide a structural basis to S1-subsite for accommodating different amino acid residues at P1 position of the tetrapeptide substrate ‘l-alanyl-d-glutamyl-meso-diaminopimelyl-d-alanine’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号