首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dendritic cell (DC)-based antitumor immunotherapy is a promising cancer therapy. We have previously shown that tumor-derived TGF-beta limits the efficacy of the DC/tumor fusion vaccine in mice. In the current study we investigated the effect of neutralizing tumor-derived TGF-beta on the efficacy of the DC/tumor fusion vaccine. An adenovirus encoding human TGF-beta receptor type II fused to the Fc region of human IgM (Adv-TGF-beta-R) or a control adenovirus encoding LacZ (Adv-LacZ) was used to express a soluble form of the neutralizing TGF-beta receptor (TGF-beta-R). Murine breast carcinoma cells, 4T1, but not bone marrow-derived DCs, were successfully transfected with Adv-TGF-beta-R (4T1+Adv-TGF-beta-R) using a multiplicity of infection of 300. Immunization with irradiated 4T1+Adv-TGF-beta-R tumor cells conferred enhanced antitumor immunity compared with immunization with irradiated 4T1+Adv-LacZ tumor cells. The DC/4T1+Adv-TGF-beta-R fusion vaccine offered enhanced protective and therapeutic efficacy compared with the DC/4T1-Adv-LacZ fusion vaccine. Because TGF-beta is known to induce regulatory T cells (Tregs), we further showed that the DC/4T1+Adv-TGF-beta-R fusion vaccine induced fewer CD4(+)CD25(+)Foxp3(+) Tregs than the DC/4T1+Adv-LacZ fusion vaccine in vitro and in vivo. The suppressive role of splenic CD4(+)CD25(+) Tregs isolated from mice immunized with DC/4T1+Adv-LacZ was demonstrated using a CTL killing assay. Similar enhanced therapeutic efficacy was observed in murine renal cell carcinoma, RenCa, which expresses a high level of TGF-beta. We conclude that the blockade of tumor-derived TGF-beta reduces Treg induction by the DC/tumor fusion vaccine and enhances antitumor immunity. This may be an effective strategy to enhance human DC-based antitumor vaccines.  相似文献   

2.

Background

Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research.

Methodology/Principal Findings

We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive, 532 nm green laser prior to intradermal (i.d.) or intramuscular (i.m.) administration of vaccines at the site of laser illumination. The pre-illumination accelerated the motility of APCs as shown by intravital confocal microscopy, leading to sufficient antigen (Ag)-uptake at the site of vaccine injection and transportation of the Ag-captured APCs to the draining lymph nodes. As a result, the number of Ag+ dendritic cells (DCs) in draining lymph nodes was significantly higher in both the 1° and 2° draining lymph nodes in the presence than in the absence of LVA. Laser-mediated increases in the motility and lymphatic transportation of APCs augmented significantly humoral immune responses directed against a model vaccine ovalbumin (OVA) or influenza vaccine i.d. injected in both primary and booster vaccinations as compared to the vaccine itself. Strikingly, when the laser was delivered by a hair-like diffusing optical fiber into muscle, laser illumination greatly boosted not only humoral but also cell-mediated immune responses provoked by i.m. immunization with OVA relative to OVA alone.

Conclusion/Significance

The results demonstrate the ability of this safe LVA to augment both humoral and cell-mediated immune responses. In comparison with all current vaccine adjuvants that are either chemical compounds or biological agents, LVA is novel in both its form and mechanism; it is risk-free and has distinct advantages over traditional vaccine adjuvants.  相似文献   

3.
Immunogenic cell death is characterized by damage-associated molecular patterns, which can enhance the maturation and antigen uptake of dendritic cells. Shikonin, an anti-inflammatory and antitumor phytochemical, was exploited here as an adjuvant for dendritic cell-based cancer vaccines via induction of immunogenic cell death. Shikonin can effectively activate both receptor- and mitochondria-mediated apoptosis and increase the expression of all five tested damage-associated molecular patterns in the resultant tumor cell lysates. The combination treatment with damage-associated molecular patterns and LPS activates dendritic cells to a high maturation status and enhances the priming of Th1/Th17 effector cells. Shikonin-tumor cell lysate-loaded mature dendritic cells exhibit a high level of CD86 and MHC class II and activate Th1 cells. The shikonin-tumor cell lysate-loaded dendritic cell vaccines result in a strong induction of cytotoxic activity of splenocytes against target tumor cells, a retardation in tumor growth, and an increase in the survival of test mice. The much enhanced immunogenicity and efficacy of the current cancer vaccine formulation, that is, the use of shikonin-treated tumor cells as cell lysates for the pulse of dendritic cells in culture, may suggest a new ex vivo approach for developing individualized, dendritic cells-based anticancer vaccines.  相似文献   

4.
Although CD8+ cytotoxic T lymphocyte (CTL) epitope-based DNA vaccination is valuable experience on vaccine research but many attempts are still continued to achieve acceptable protective response. To study the role of full length antigen in CTL epitope immunization, we evaluated cellular immunity of diverse patterns of complete Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) and the immunodominant CTL epitope (498–505) DNA injection in C57BL/6 mice. Optimal immune response was observed in the group immunized with the full length of gB in the first injection and CTL epitope in the second and third vaccination as assessed by lymphocyte proliferation assay (MTT), cytokine assay (ELISA) and CTL assay. B cell and spatially CD4+ T cell epitopes in full length protein might be important for appropriate priming of CTL immune response. These findings may have important implication for the improvement of CTL epitope based DNA vaccine against HSV and other pathogens.  相似文献   

5.
TLR ligands are potent adjuvants and promote Th1 responses to coadministered Ags by inducing innate IL-12 production. We found that TLR ligands also promote the induction of IL-10-secreting regulatory T (Treg) cells through p38 MAPK-induced IL-10 production by dendritic cells (DC). Inhibition of p38 suppressed TLR-induced IL-10 and PGE(2) and enhanced IL-12 production in DC. Incubation of Ag-pulsed CpG-stimulated DC with a p38 inhibitor suppressed their ability to generate Treg cells, while enhancing induction of Th1 cells. In addition, inhibition of p38 enhanced the antitumor therapeutic efficacy of DC pulsed with Ag and CpG and this was associated with an enhanced frequency of IFN-gamma-secreting T cells and a reduction of Foxp3(+) Treg cells infiltrating the tumors. Furthermore, addition of a p38 inhibitor to a pertussis vaccine formulated with CpG enhanced its protective efficacy in a murine respiratory challenge model. These data demonstrate that the adjuvant activity of TLR agonists is compromised by coinduction of Treg cells, but this can be overcome by inhibiting p38 signaling in DC. Our findings suggest that p38 is an important therapeutic target and provides a mechanism to enhance the efficacy of TLR agonists as vaccine adjuvants and cancer immunotherapeutics.  相似文献   

6.
Xie Q  Luo J  Zhu Z  Wang G  Wang J  Niu B 《Cellular immunology》2012,276(1-2):135-143
An efficient method for delivering DNA vaccines into dendritic cells is considered to be of paramount importance. Electroporation-based technology (nucleofection) has gained increasingly popularity, but few reports focused on the possible functional consequences related to this method. In this study, the nucleofection technique was used to transfer the recombinant plasmid into hMoDCs for phenotype expression analysis and immunopotency detection. The results showed that the nucleofection of increasing concentrations of plasmid DNA decreased the viability of the hMoDCs. The welfare of nucleofected hMoDCs depended on the dosage of the plasmid and the plasmid's retention time within the cells. Accompanied by the process of nucleofection, it would bring some non-specific changes. The methodology reported here is suggestive of a feasible system for DNA vaccine transfer into hMoDCs with the caution of certain undesired effect.  相似文献   

7.
For this study, the intercellular trafficking ability of bovine herpesvirus 1 (BHV-1) VP22 was applied to improve the efficacy of a DNA vaccine in calves. A plasmid encoding a truncated version of glycoprotein D (tgD) fused to VP22 was constructed. The plasmid encoding tgD-VP22 elicited significantly enhanced and more balanced immune responses than those induced by a plasmid encoding tgD. Furthermore, protection against a BHV-1 challenge was obtained in calves immunized with the plasmid encoding tgD-VP22, as shown by significant reductions in viral excretion. However, less significant protection was observed for animals vaccinated with the tgD-expressing plasmid, correlating with the lower level of immunity observed prechallenge. This is the first report of the use of VP22 as a transport molecule in the context of a DNA vaccine for a large animal species.  相似文献   

8.
In the context of transplantation, dendritic cells (DCs) can sensitize alloreactive T cells via two pathways. The direct pathway is initiated by donor DCs presenting intact donor MHC molecules. The indirect pathway results from recipient DCs processing and presenting donor MHC as peptide. This simple dichotomy suggests that T cells with direct and indirect allospecificity cannot cross-regulate each other because distinct APCs are involved. In this study we describe a third, semidirect pathway of MHC alloantigen presentation by DCs that challenges this conclusion. Mouse DCs, when cocultured with allogeneic DCs or endothelial cells, acquired substantial levels of class I and class II MHC:peptide complexes in a temperature- and energy-dependent manner. Most importantly, DCs acquired allogeneic MHC in vivo upon migration to regional lymph nodes. The acquired MHC molecules were detected by Ab staining and induced proliferation of Ag-specific T cells in vitro. These data suggest that recipient DCs, due to acquisition of donor MHC molecules, may link T cells with direct and indirect allospecificity.  相似文献   

9.
Geng S  Zhong Y  Wang S  Liu H  Zou Q  Xie X  Li C  Yu Q  He Z  Wang B 《PloS one》2012,7(3):e33015
The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses.  相似文献   

10.

Background

Shikonin, a phytochemical purified from Lithospermum erythrorhizon, has been shown to confer diverse pharmacological activities, including accelerating granuloma formation, wound healing, anti-inflammation and others, and is explored for immune-modifier activities for vaccination in this study. Transdermal gene-based vaccine is an attractive approach for delivery of DNA transgenes encoding specific tumor antigens to host skin tissues. Skin dendritic cells (DCs), a potent antigen-presenting cell type, is known to play a critical role in transmitting and orchestrating tumor antigen-specific immunities against cancers. The present study hence employs these various components for experimentation.

Method

The mRNA and protein expression of RANTES were detected by RT-PCR and ELISA, respectively. The regional expression of RANTES and tissue damage in test skin were evaluated via immunohistochemistry assay. Fluorescein isothiocyanate sensitization assay was performed to trace the trafficking of DCs from the skin vaccination site to draining lymph nodes. Adjuvantic effect of shikonin on gene gun-delivered human gp100 (hgp100) DNA cancer vaccine was studied in a human gp100-transfected B16 (B16/hgp100) tumor model.

Results

Among various phytochemicals tested, shikonin induced the highest level of expression of RANTES in normal skin tissues. In comparison, mouse RANTES cDNA gene transfection induced a higher level of mRANTES expression for a longer period, but caused more extensive skin damage. Topical application of shikonin onto the immunization site before gene gun-mediated vaccination augmented the population of skin DCs migrating into the draining lymph nodes. A hgp100 cDNA gene vaccination regimen with shikonin pretreatment as an adjuvant in a B16/hgp100 tumor model increased cytotoxic T lymphocyte activities in splenocytes and lymph node cells on target tumor cells.

Conclusion

Together, our findings suggest that shikonin can effectively enhance anti-tumor potency of a gene-based cancer vaccine via the induction of RANTES expression at the skin immunization site.  相似文献   

11.
We report that administration of celecoxib, a specific cyclooxygenase-2 (COX-2) inhibitor, in combination with a dendritic cell-based cancer vaccine significantly augments vaccine efficacy in reducing primary tumor burden, preventing metastasis, and increasing survival. This combination treatment was tested in MMTV-PyV MT mice that develop spontaneous mammary gland tumors with metastasis to the lungs and bone marrow. Improved vaccine potency was associated with an increase in tumor-specific CTLs. Enhanced CTL activity was attributed to a significant decrease in levels of tumor-associated IDO, a negative regulator of T cell activity. We present data suggesting that inhibiting COX-2 activity in vivo regulates IDO expression within the tumor microenvironment; this is further corroborated in the MDA-MB-231 human breast cancer cell line. Thus, a novel mechanism of COX-2-induced immunosuppression via regulation of IDO has emerged that may have implications in designing future cancer vaccines.  相似文献   

12.
Camptothecin (CPT) is an anticancer drug that promotes DNA breakage at replication forks and the formation of lesions that activate the processes of homologous recombination (HR) and nonhomologous end joining. We have taken advantage of the CPT-induced damage response by coupling it to gene repair directed by synthetic oligonucleotides, a process in which a mutant base pair is converted into a wild-type one. Here, we show that pretreating DLD-1 cells with CPT leads to a significant stimulation in the frequency of correction of an integrated mutant enhanced green fluorescent protein gene. The stimulation is dose-dependent and coincident with the formation of double-strand DNA breaks. Caffeine, but not vanillin, blocks the enhancement of gene repair suggesting that, in this system, HR is the pathway most responsible for elevating the frequency of correction. The involvement of HR is further proven by studies in which wortmannin was seen to inhibit gene repair at high concentrations but not at lower levels that are known to inhibit DNA-PK activity. Taken together, our results suggest that DNA damage induced by CPT activates a cellular response that stimulates gene repair in mammalian cells.  相似文献   

13.
构建了含有恶性疟原虫抗原基因 ( AWTE)及白介素 2基因的重组质粒 p CMV- AWTE以及p CMV- IL2、p CMV- IL2 - AWTE、p RSV- AWTE。将纯化的质粒混合后免疫小鼠 ,3次免疫后比较其诱导机体产生的免疫应答的水平 ,发现 IL- 2可以明显地提高机体的细胞免疫 ,而对体液免疫的影响甚微。麻醉剂、蔗糖、免疫剂量等因素也可以不同程度地提高机体的免疫应答水平 ,RSV启动子与 CMV启动子对免疫应答水平无明显的影响  相似文献   

14.
There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ’s effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1β and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.  相似文献   

15.
Although the pivotal role of follicular dendritic cells (FDCs) in humoral immune responses has been demonstrated, little is known at the molecular level of how FDCs contribute to the organogenesis, B cell differentiation, and regulation of T cell functions in the germinal center. By immunizing with FDC-like cells, we have developed a monoclonal antibody (MAb), which stains the germinal centers in tonsil section. In the current study, the target cell of MAb 3C8 was identified as FDC by confocal scanning fluorescence microscopy. Unlike other MAbs against FDC, MAb 3C8 does not cross-react with bone marrow-derived blood cells. Amino acid sequencing of NH(2)-terminal region of immunoprecipitated 3C8 Ag reveals that 3C8 is a novel FDC protein. Further studies of 3C8 molecule will shed light on the cellular origin of FDC and reveal unknown functions of FDC.  相似文献   

16.

Background

Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody that prolongs survival in the treatment for head and neck cancer (HNC), but only in 10–20 % of patients. An immunological mechanism of action such as natural killer (NK) cell–mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR-bearing cells.

Objective

To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells.

Methods

Peripheral blood mononuclear cells (PBMC), NK, DC, and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853-861 tetramer staining.

Results

TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p < 0.01) and HNC patients (p < 0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα (p < 0.0001), IFNγ (p < 0.0001), and IL-12p40 (p < 0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p < 0.001). TLR8-stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab.

Discussion

VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination and for determining biomarkers of response.  相似文献   

17.
《Cytokine》2011,53(3):238-244
Bryostatin-1 (Bryo-1), a PKC modulator, was previously shown to activate monocytes and lymphocytes to produce cytokines. In this report, we investigated the adjuvanticity of Bryo-1 both in vitro and in vivo. First, Bryo-1 was found to induce the release of CCL2 and CCL3 from mouse bone marrow-derived dendritic cells (BMDC) in a dose-dependent manner. As little as 0.1 nM Bryo-I induced release of chemokines from BMDC and the maximal induction could be achieved at 5–10 nM. Both PKC and ERK inhibitors attenuated the release of CCL2 and CCL3. Consistently, Western blot indicated that Bryo-I activated ERK in a dose- and time-dependent manner. Experiments with the NF-κB inhibitor, MG-132, demonstrated that NF-κB was involved in the induction of CCL2 but not CCL3. Because chemokines have been demonstrated to have profound effects on immune reactions by regulating the trafficking of DC and other lymphocytes into lymphoid organs, Bryo-I was tested as an adjuvant in an E7 peptide (MHC class I-restricted peptide epitope derived from human papillomavirus (HPV) 16 E7 protein)-based cancer vaccine. Mice immunized by s.c. injection with Bryo-I/E7 had enlarged draining lymph nodes and showed an antigen specific T-cell response demonstrated by the release of IFN-γ from isolated splenocytes and in vivo CTL activity. Finally, immunization with Bryo-I/E7 totally prevented the E7-expressing TC-1 tumor growth in mice. In conclusion, for the first time, we demonstrated that Bryo-I induced chemokine release from dendritic cell and was an effective adjuvant for peptide cancer vaccine.  相似文献   

18.
We have shown that DNA encoding the anti-apoptotic protein Bcl-xL enhances E7-specific CD8+ T-cell responses and DNA encoding pro-apoptotic protein caspase-3 suppresses E7-specific CD8+ T-cell responses when co-administered intradermally via gene gun with DNA encoding human papillomavirus type 16 (HPV-16) E7 linked to the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1). E7 and LAMP-1 are linked to form the chimeric Sig/E7/LAMP-1 (SEL). Because co-administration does not ensure delivery of both constructs to a single cell, we used pVITRO, a mammalian expression vector with double promoters, to ensure expression of both molecules in the same cell. We vaccinated C57BL/6 mice with pVITRO-SEL-Bcl-xL, pVITRO-SEL-mtBcl-xL, pVITRO-SEL, or pVITRO-SEL-caspase-3 intradermally via gene gun and intramuscularly via injection. We demonstrated that vaccination with pVITRO achieved similar results to a co-administration strategy: that Bcl-xL enhanced the E7-specific CTL response and caspase-3 suppressed the E7-specific CTL response. In addition, we found intradermal vaccination elicited significantly higher numbers of E7-specific CD8+ T cells compared to intramuscular vaccination. Thus, intradermal vaccination with a pVITRO vector combining an anti-apoptotic strategy (Bcl-xL) and an intracellular targeting strategy (SEL) further enhances the E7-specific CD8+ T-cell response and guarantees co-expression of both encoded molecules in transfected cells.T.W.K. and C.-F.H. contributed equally to this work.  相似文献   

19.
Radiation therapy (RT) is one of the main treatment modalities for cervical cancer. Rosiglitazone (ROSI) has been reported to have antiproliferative effects against various types of cancer cells and also to induce antioxidant enzymes that can scavenge reactive oxygen species (ROS) and thereby modify radiosensitivity. Here, we explored the effect of ROSI on radiosensitivity and the underlying mechanisms in cervical cancer cells. Three cervical cancer cell lines (ME-180, HeLa, and SiHa) were used. The cells were pretreated with ROSI and then irradiated. Expression of proteins of interest was detected by western blot and immunofluorescence. Intracellular production of ROS was measured by H2DCFDA. Radiosensitivity was assessed by monitoring clonogenic survival. Expression of antioxidant enzymes (catalase, superoxide dismutases) was increased by ROSI in HeLa and SiHa cells, but not in ME-180 cells. With ROSI pre-treatment, cell survival after irradiation remained unchanged in HeLa and SiHa cells, but decreased in ME-180 cells. Radiation-induced expression of γ-H2AX was increased and that of RAD51 was decreased by ROSI pre-treatment in ME-180 cells, but not in HeLa cells. ROSI increases radiosensitivity by inhibiting RAD51-mediated repair of DNA damage in some cervical cancer cell lines; therefore, ROSI is a potential inhibitor of RAD51 that can be used to enhance the effect of RT in the treatment of some cervical cancers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号