首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pristine peatlands are a significant source of atmospheric methane (CH4). Large spatio–temporal variation has been observed in flux rates within and between peatlands. Variation is commonly associated with water level, vegetation structure, soil chemistry and climatic variability. We measured spatial and temporal variation in CH4 fluxes in a blanket bog during the period 2003–2005. The surface of the bog was composed of different vegetation communities (hummocks, lawns and hollows) along a water level gradient. CH4 fluxes were measured in each community using a chamber method. Regression modelling was used to relate the fluxes with environmental variables and to integrate fluxes over the study period. Water level was the strongest controller of spatial variation; the average flux rate was lowest in hummocks and highest in hollows, ranging from 3 to 53 mg CH4 m−2 day−1. In vegetation communities with a permanently high water level, the amount and species composition of vegetation was also a good indicator of flux rate. We observed a clear seasonal variation in flux that was chiefly controlled by temperature. The annual average flux (6.2 g CH4 m−2 year−1) was similar to previous estimates from blanket bogs and continental raised bogs. No interannual variation was observed.  相似文献   

2.
Drainage of peatlands for forestry starts a succession of ground vegetation in which mire species are gradually replaced by forest species. Some mire plant communities vanish quickly following the water-level drawdown; some may prevail longer in the moister patches of peatland. Drainage ditches, as a new kind of surface, introduce another component of spatial variation in drained peatlands. These variations were hypothesized to affect methane (CH4) fluxes from drained peatlands. Methane fluxes from different plant communities and unvegetated surfaces, including ditches, were measured at the drained part of Lakkasuo mire, Central Finland. The fluxes were found to be related to peatland site type, plant community, water-table position and soil temperature. At nutrient-rich fen sites fluxes between plant communities differed only a little: almost all plots acted as CH4 sinks (−0.9 to −0.4 mg CH4 m−2 d−1), with the exception of Eriophorum angustifolium Honck. communities, which emitted 0.9 g CH4 m−2 d−1. At nutrient-poor bog site the differences between plant communities were clearer. The highest emissions were measured from Eriophorum vaginatum L. communities (29.7 mg CH4 m−2 d−1), with a decreasing trend to Sphagna (10.0 mg CH4 m−2 d−1) and forest moss communities (2.6 mg CH4 m−2 d−1). CH4 emissions from different kinds of ditches were highly variable, and extremely high emissions (summertime averages 182–600 mg CH4 m−2 d−1) were measured from continuously water-covered ditches at the drained fen. Variability in the emissions was caused by differences in the origin and movement of water in the ditches, as well as differences in vegetation communities in the ditches. While drainage on average greatly decreases CH4 emissions from peatlands, a great spatial variability in fluxes is emerged. Emissions from ditches constantly covered with water, may in some cases have a great impact on the overall CH4 emissions from drained peatlands.  相似文献   

3.
Carbon fluxes from a tropical peat swamp forest floor   总被引:3,自引:0,他引:3  
A tropical ombrotrophic peatland ecosystem is one of the largest terrestrial carbon stores. Flux rates of carbon dioxide (CO2) and methane (CH4) were studied at various peat water table depths in a mixed‐type peat swamp forest floor in Central Kalimantan, Indonesia. Temporary gas fluxes on microtopographically differing hummock and hollow peat surfaces were combined with peat water table data to produce annual cumulative flux estimates. Hummocks formed mainly from living and dead tree roots and decaying debris maintained a relatively steady CO2 emission rate regardless of the water table position in peat. In nearly vegetation‐free hollows, CO2 emission rates were progressively smaller as the water table rose towards the peat surface. Methane emissions from the peat surface remained small and were detected only in water‐saturated peat. By applying long‐term peat water table data, annual gas emissions from the peat swamp forest floor were estimated to be 3493±316 g CO2 m?2 and less than 1.36±0.57 g CH4 m?2. On the basis of the carbon emitted, CO2 is clearly a more important greenhouse gas than CH4. CO2 emissions from peat are the highest during the dry season, when the oxic peat layer is at its thickest because of water table lowering.  相似文献   

4.
In North America, mulching of vacuum-harvested sites combined with blocking of the drainage system is widely used for peatland restoration to accelerate Sphagnum establishment. However, peat extraction in fen peatlands or exposure of deeper minerotrophic peat layers results in soil chemistry that is less suitable for re-establishment of Sphagnum moss. In this situation, restoration of plant species characteristic of minerotrophic peatlands is desirable to return the site to a carbon accumulating system. In these cases, it may be worthwhile to maintain spontaneously revegetating species as part of restoration if they provide desirable ecosystem functions. We studied the role of six spontaneously recolonizing vegetation communities for methane (CH4) emissions and pore water CH4 concentration for two growing seasons (2008 and 2009) at an abandoned minerotrophic peatland in southeastern Quebec. We then compared the results with bare peat and adjacent natural fen vegetation. Communities dominated by Eriophorum vaginatum, Carex aquatilis and Typha latifolia had CH4 flux an order of magnitude greater than other cutover vegetation types and natural sites. In contrast, Scirpus atrocinctus and Equisetum arvense had CH4 emission rates lower than natural hollow vegetation. We found seasonal average water table and vegetation volume had significant correlation with CH4 flux. Water table and soil temperature were significantly correlated with CH4 flux at plots where the water table was near or above the surface. Pore water CH4 concentration suggests that CH4 is being produced at the cutover peatland and that low measured fluxes likely result from substantial oxidation of CH4 in the unsaturated zone. Understanding ecosystem functions of spontaneously recolonizing species on cutover fens can be used to help make decisions about the inclusion of these communities for future restoration measures.  相似文献   

5.
Atmospheric CO2 and CH4 exchange in peatlands is controlled by water table levels and soil moisture, but impacts of short periods of dryness and rainfall are poorly known. We conducted drying-rewetting experiments with mesocosms from an ombrotrophic northern bog and an alpine, minerotrophic fen. Efflux of CO2 and CH4 was measured using static chambers and turnover and diffusion rates were calculated from depth profiles of gas concentrations. Due to a much lower macroporosity in the fen compared to the bog peat, water table fluctuated more strongly when irrigation was stopped and resumed, about 11 cm in the fen and 5 cm in the bog peat. Small changes in air filled porosity caused CO2 and CH4 concentrations in the fen peat to be insensitive to changes in water table position. CO2 emission was by a factor of 5 higher in the fen than in the bog mesocosms and changed little with water table position in both peats. This was probably caused by the importance of the uppermost, permanently unsaturated zone for auto- and heterotrophic CO2 production, and a decoupling of air filled porosity from water table position. CH4 emission was <0.4 mmol m?2 day?1 in the bog peat, and up to >12.6 mmol m?2 day?1 in the fen peat, where it was lowered by water table fluctuations. CH4 production was limited to the saturated zone in the bog peat but proceeded in the capillary fringe of the fen peat. Water table drawdown partly led to inhibition of methanogenesis in the newly unsaturated zone, but CH4 production appeared to continue after irrigation without time-lag. The identified effects of irrigation on soil moisture and respiration highlight the importance of peat physical properties for respiratory dynamics; but the atmospheric carbon exchange was fairly insensitive to the small-scale fluctuations induced.  相似文献   

6.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

7.
The importance of floating peat to methane fluxes from flooded peatlands   总被引:3,自引:1,他引:2  
The effect of flooding on methane (CH4) fluxes was studied through the construction of an experimental reservoir in a boreal forest wetland at the Experimental Lakes Area in northwestern Ontario. Prior to flooding, the peatland surface was a small source of CH4 to the atmosphere (1.0± SD of 2.3 mg CH4 m–2 d–1). After flooding, CH4 fluxes from the submerged peat surface increased to 64±68 mg CH4 m–2 d–1 CH4 bubbles within the submerged peat caused about 1/3 of the peat to float. Fluxes from these floating peat islands were much higher (440±350 mg CH4 m–2 d–2) than from both the pre-flood (undisturbed) and the post-flood (submerged) peat surfaces.The high fluxes of CH4 from the floating peat surfaces may be explained by a number of factors known to affect the production and consumption of CH4 in peat. In floating peat, however, these factors are particularly enhanced and include decreased oxidation of CH4 due to the loss of aerobic habitat normally found above the water table of undisturbed peat and to increased peat temperatures. The extremely high fluxes associated with newly lifted peat may decrease as the islands age. However, CH4 flux rates from floating peat islands that were several years old still far exceeded those from undisturbed peat surfaces and from the water surface of a newly created reservoir.  相似文献   

8.
We investigate temporal changes in methane emissions over a three-year period from two peatlands in Michigan. Mean daily fluxes ranged from 0.6–68.4 mg CH4 m–2d–1 in plant communities dominated by Chamaedaphne calyculata, an eficaceous shrub, to 11.5–209 mg CH4 m–2d–1 in areas dominated by plants with aerenchymatous tissues, such as Carex oligosperma and Scheuchzeria palustris. Correlations between methane flux and water table position were significant at all sites for one annual cycle when water table fluctuations ranged from 15 cm above to 50 cm below the peat surface. Correlations were not significant during the second and third annual periods with smaller water table fluctuations. Methane flux was strongly correlated with peat temperatures at –5 to –40 cm (r s = 0.82 to 0.98) for all three years at sites with flora acting as conduits for methane transport. At shrub sites, the correlations between methane flux and peat temperature were weak to not significant during the first two years, but were strong in the third year.Low rates of methane consumption (–0.2 to –1.5 mg CH4 m–2 d–1 ) were observed at shrub sites when the water table was below –20 cm, while sites with plants capable of methane transport always had positive net fluxes of methane. The methane oxidizing potential at both types of sites was confirmed by peat core experiments. The results of this study indicate that methane emissions occur at rates that cannot be explained by diffusion alone; plant communities play a significant role in altering methane flux from peatland ecosystems by directly transporting methane from anaerobic peat to the atmosphere.  相似文献   

9.
Under the warmer climate, predicted for the future, northern peatlands are expected to become drier. This drying will lower the water table and likely result in reduced emissions of methane (CH4) from these ecosystems. However, the prediction of declining CH4 fluxes does not consider the potential effects of ecological succession, particularly the invasion of sedges into currently wet sites (open water pools, low lawns). The goal of this study was to characterize the relationship between the presence of sedges in peatlands and CH4 efflux under natural conditions and under a climate change simulation (drained peatland). Methane fluxes, gross ecosystem production, and dissolved pore water CH4 concentrations were measured and a vegetation survey was conducted in a natural and drained peatland near St. Charles-de-Bellechasse, Quebec, Canada, in the summer of 2003. Each peatland also had plots where the sedges had been removed by clipping. Sedges were larger, more dominant, and more productive at the drained peatland site. The natural peatland had higher CH4 fluxes than the drained peatland, indicating that drainage was a significant control on CH4 flux. Methane flux was higher from plots with sedges than from plots where sedges had been removed at the natural peatland site, whereas the opposite case was observed at the drained peatland site. These results suggest that CH4 flux was enhanced by sedges at the natural peatland site and attenuated by sedges at the drained peatland site. However, the attenuation of CH4 flux due to sedges at the drained site was reduced in wetter periods. This finding suggests that CH4 flux could be decreased in the event of climate warming due to the greater depth to the water table, and that sedges colonizing these areas could further attenuate CH4 fluxes during dry periods. However, during wet periods, the sedges may cause CH4 fluxes to be higher than is currently predicted for climate change scenarios.  相似文献   

10.
Hot spots of CH4 emissions are a typical feature of pristine peatlands at the microsite and landscape scale. To determine whether rewetting and lake construction in a cutaway peatland would result in the re‐creation of hot spots, we first measured CH4 fluxes over a 2‐year period with static chambers and estimated annual emissions. Second, to assess whether rewetting and lake creation would produce hot spots at the landscape level, we hypothesized a number of alternative land use scenarios for the peatland following the cessation of peat extraction. Using the results from this study and other studies from literature, we calculated the global warming potential (GWP) of each scenario and the respective contribution of CH4. The results showed that hot spots of CH4 fluxes were observed as a consequence of microsite‐specific differences in water table (WT) position and plant productivity. CH4 fluxes were closely related to peat temperature at 10 cm depth and WT position. Annual emissions ranged from 4.3 to 38.8 g CH4 m?2 yr?1 in 2002 and 3.2 to 28.8 g CH4 m?2 yr?1 in 2003. The scenario results suggest that lake creation is likely to result in the re‐creation of a hot spot at the landscape level. However, the transition from cutaway to wetland ecosystem may lead to a reduction in the GWP of the peatland.  相似文献   

11.
A vegetation survey was carried out in a relatively intact Atlantic blanket bog in Southwest Ireland to study the vegetation patterns in relation to environmental variation, and to quantify the effect of artificial and natural borders on compositional variation. The data were analysed using canonical correspondence analysis. In terms of both vegetation and water chemistry, the study site can be categorized as typical of Atlantic blanket bogs in the maritime regions of North-western Europe. The distribution of plant species was explained mainly by depth of the water table. The distribution of bryophytes was secondarily explained by the pH of the bog water, while the distribution of vascular plants was secondarily explained by concentrations of ammonia. The vegetation distribution exhibited little variation between the central sector of the peatland and its disturbed edges (hill-grazing and restoration areas), but a substantial variation was observed between the area along a natural edge (stream) and the areas close to the other peatland borders or centre. Similarly, the internal variation within each sector (centre, hill-grazing edge and restoration area edge) was small, but substantial vegetation variation was observed within the area located along the stream. The area along the stream was associated with relatively deep water table, shallow peat depth, high water colour, pH and NH4 + concentrations, and low Cl concentrations in the bog water. Our results suggest the existence of strong centre-natural margin gradients, as in raised bogs, and indicate that human or animal disturbance do not give rise to the marked transition zones that often characterize natural margins of mire systems. This indicates that even small areas and remnants of Atlantic blanket bogs are worthy of conservation and that their conservation value would benefit from the inclusion of sectors close to the natural peatland borders, which would increase the plant biodiversity of the conserved area.  相似文献   

12.
Methane-oxidizing bacteria (MOB) are the only biological sinks for methane (CH4). Drainage of peatlands is known to decrease overall CH4 emission, but the effect on MOB is unknown. The objective of this work was to characterize the MOB community and activity in two ecohydrologically different pristine peatland ecosystems, a fen and a bog, and their counterparts that were drained in 1961. Oligotrophic fens are groundwater-fed peatlands, but ombrotrophic bogs receive additional water and nutrients only from rainwater. The sites were sampled in August 2003 down to 10 cm below the water table (WT), and cores were divided into 10-cm subsamples. CH4 oxidation was measured by gas chromatography (GC) to characterize MOB activity. The MOB community structure was characterized by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) and sequencing methods using partial pmoA and mmoX genes. The highest CH4 oxidation rates were measured from the subsamples 20–30 and 30–40 cm above WT at the pristine oligotrophic fen (12.7 and 10.5 μmol CH4 dm−3 h−1, respectively), but the rates decreased to almost zero in the vicinity of WT. In the pristine ombrotrophic bog, the highest oxidation rate at 0–10 cm was lower than in the fen (8.10 μmol CH4 dm−3 h−1), but in contrast to the fen, oxidation rates of 4.5 μmol CH4 dm−3 h−1 were observed at WT and 10 cm below WT. Drainage reduced the CH4 oxidation rates to maximum values of 1.67 and 5.77 μmol CH4 dm−3 h−1 at 30–40 and 20–30 cm of the fen and bog site, respectively. From the total of 13 pmoA-derived DGGE bands found in the study, 11, 3, 6, and 2 were observed in the pristine fen and bog and their drained counterparts, respectively. According to the nonmetric multidimensional scaling of the DGGE banding pattern, the MOB community of the pristine fen differed from the other sites. The majority of partial pmoA sequences belonged to type I MOB, whereas the partial mmoX bands that were observed only in the bog sites formed a distinct group relating more to type II MOB. This study indicates that fen and bog ecosystems differ in MOB activity and community structure, and both these factors are affected by drainage.  相似文献   

13.
CO2 and CH4 fluxes were monitored over 4 years in a range of taiga forests along the Tanana River in interior Alaska. Floodplain alder and white spruce sites and upland birch/aspen and white spruce sites were examined. Each site had control, fertilized, and sawdust amended plots; flux measurements began during the second treatment year. CO2 emissions decreased with successional age across the sites (alder, birch/aspen, and white spruce, in order of succession) regardless of landscape position. Although CO2 fluxes showed an exponential relationship with soil temperature, the response of CO2 production to moisture fit an asymptotic model. Of the manipulations, only N fertilization had an effect on CO2 flux, decreasing flux in the floodplain sites but increasing it in the birch/aspen site. Landscape position was the best predictor of CH4 flux. The two upland sites consumed CH4 at similar rates (approximately 0.5 mg C m−2 d−1), whereas the floodplain sites had lower consumption rates (0–0.3 mg C m−2 d−1). N fertilization and sawdust both inhibited CH4 consumption in the upland birch/aspen and floodplain spruce sites but not in the upland spruce site. The biological processes driving CO2 fluxes were sensitive to temperature, moisture, and vegetation, whereas CH4 fluxes were sensitive primarily to landscape position and biogeochemical disturbances. Hence, climate change effects on C-gas flux in taiga forest soils will depend on the relationship between soil temperature and moisture and the concomitant changes in soil nutrient pools and cycles. Received 10 March 1998; accepted 29 December 1999.  相似文献   

14.
Large Greenhouse Gas Emissions from a Temperate Peatland Pasture   总被引:2,自引:0,他引:2  
Agricultural drainage is thought to alter greenhouse gas emissions from temperate peatlands, with CH4 emissions reduced in favor of greater CO2 losses. Attention has largely focussed on C trace gases, and less is known about the impacts of agricultural conversion on N2O or global warming potential. We report greenhouse gas fluxes (CH4, CO2, N2O) from a drained peatland in the Sacramento-San Joaquin River Delta, California, USA currently managed as a rangeland (that is, pasture). This ecosystem was a net source of CH4 (25.8 ± 1.4 mg CH4-C m−2 d−1) and N2O (6.4 ± 0.4 mg N2O-N m−2 d−1). Methane fluxes were comparable to those of other managed temperate peatlands, whereas N2O fluxes were very high; equivalent to fluxes from heavily fertilized agroecosystems and tropical forests. Ecosystem scale CH4 fluxes were driven by “hotspots” (drainage ditches) that accounted for less than 5% of the land area but more than 84% of emissions. Methane fluxes were unresponsive to seasonal fluctuations in climate and showed minimal temporal variability. Nitrous oxide fluxes were more homogeneously distributed throughout the landscape and responded to fluctuations in environmental variables, especially soil moisture. Elevated CH4 and N2O fluxes contributed to a high overall ecosystem global warming potential (531 g CO2-C equivalents m−2 y−1), with non-CO2 trace gas fluxes offsetting the atmospheric “cooling” effects of photoassimilation. These data suggest that managed Delta peatlands are potentially large regional sources of greenhouse gases, with spatial heterogeneity in soil moisture modulating the relative importance of each gas for ecosystem global warming potential.  相似文献   

15.
Soil surface CO2 flux was measured in hollow and hummock microhabitats in a peatland in north central Minnesota from June to October in 1991. We used a closed infrared gas exchange system to measure soil CO2 flux. The rates of CO2 evolution from hummocks (9.8 ± 3.5 g m−2 d−1, [mean ± SE]) were consistently higher than those from hollows (5.4 ± 2.9 g m−2 d−1) (the hummock values included the contribution of moss dark respiration, which may account for 10–20% of the total measured flux). The soil CO2 flux was strongly temperature-dependent (Q10 ≈ 3.7) and appeared to be linearly related to changes in water table depth. An empirical multiplicative model, using peat temperature and water table depth as independent variables, explained about 81% of the variance in the CO2 flux data. Using the empirical model with measurements of peat temperature and estimates of hollow/hummock microtopographic distribution (relative to water table elevation), daily rates of “site-averaged” CO2 evolution were calculated. For the six-month period (May–October), the total soil CO2 released from this ecosystem was estimated to be about 1340 g CO2 m−2. Published as Paper No. 9950, Journal Series, Nebraska Agricultural Research Division, University of Nebraska, Lincoln, NE, USA.  相似文献   

16.
Climate change will directly affect carbon and nitrogen mineralization through changes in temperature and soil moisture, but it may also indirectly affect mineralization rates through changes in soil quality. We used an experimental mesocosm system to examine the effects of 6‐year manipulations of infrared loading (warming) and water‐table level on the potential anaerobic nitrogen and carbon (as carbon dioxide (CO2) and methane (CH4) production) mineralization potentials of bog and fen peat over 11 weeks under uniform anaerobic conditions. To investigate the response of the dominant methanogenic pathways, we also analyzed the stable isotope composition of CH4 produced in the samples. Bog peat from the highest water‐table treatment produced more CO2 than bog peat from drier mesocosms. Fen peat from the highest water‐table treatment produced the most CH4. Cumulative nitrogen mineralization was lowest in bog peat from the warmest treatment and lowest in the fen peat from the highest water‐table treatment. As all samples were incubated under constant conditions, observed differences in mineralization patterns reflect changes in soil quality in response to climate treatments. The largest treatment effects on carbon mineralization as CO2 occurred early in the incubations and were ameliorated over time, suggesting that the climate treatments changed the size and/or quality of a small labile carbon pool. CH4 from the fen peat appeared to be predominately from the acetoclastic pathway, while in the bog peat a strong CH4 oxidation signal was present despite the anaerobic conditions of our incubations. There was no evidence that changes in soil quality have lead to differences in the dominant methanogenic pathways in these systems. Overall, our results suggest that even relatively short‐term changes in climate can alter the quality of peat in bogs and fens, which could alter the response of peatland carbon and nitrogen mineralization to future climate change.  相似文献   

17.
Controls on the Carbon Balance of Tropical Peatlands   总被引:4,自引:0,他引:4  
The carbon balance of tropical peatlands was investigated using measurements of gaseous fluxes of carbon dioxide (CO2) and methane (CH4) at several land-use types, including nondrained forest (NDF), drained forest (DF), drained regenerating forest (DRF) after clear cutting and agricultural land (AL) in Central Kalimantan, Indonesia. Soil greenhouse gas fluxes depended on land-use, water level (WL), microtopography, temperature and vegetation physiology, among which WL was the strongest driver. All sites were CH4 sources on an annual basis and the emissions were higher in sites providing fresh litter deposition and water logged conditions. Soil CO2 flux increased exponentially with soil temperature (T s) even within an amplitude of 4–5°C. In the NDF soil CO2 flux sharply decreased when WLs rose above −0.2 and 0.1 m for hollows and hummocks, respectively. The sharp decrease suggests that the contribution of surface soil respiration (RS) to total soil CO2 flux is large. In the DF soil CO2 flux increased as WL decreased below −0.7 m probably because the fast aerobic decomposition continued in lower peat. Such an increase in CO2 flux at low WLs was also found at the stand level of the DF. Soil CO2 flux showed diurnal variation with a peak in the daytime, which would be caused by the circadian rhythm of root respiration. Among the land-use types, annual soil CO2 flux was the largest in the DRF and the smallest in the AL. Overall, the global warming potential (GWP) of CO2 emissions in these land-use types was much larger than that of CH4 fluxes.  相似文献   

18.
Termites produce methane (CH4) as a by-product of microbial metabolism of food in their hindguts, and are one of the most uncertain components of the regional and global CH4 exchange estimates. This study was conducted at Howard Springs near Darwin, and presents the first estimate of CH4 emissions from termites based on replicated in situ seasonal flux measurements in Australian savannas. Using measured fluxes of CH4 between termite mounds and the atmosphere, and between soil and the atmosphere across seasons we determined net CH4 flux within a tropical savanna woodland of northern Australia. By accounting for both mound-building and subterranean termite colony types, and estimating the contribution from tree-dwelling colonies it was calculated that termites were a CH4 source of +0.24 kg CH4-C ha−1 y−1 and soils were a CH4 sink of −1.14 kg CH4-C ha−1 y−1. Termites offset 21% of CH4 consumed by soil resulting in net sink strength of −0.90 kg CH4-C ha−1 y−1 for these savannas. For Microcerotermes nervosus (Hill), the most abundant mound-building termite species at this site, mound basal area explained 48% of the variation in mound CH4 flux. CH4 emissions from termites offset 0.1% of the net biome productivity (NBP) and CH4 consumption by soil adds 0.5% to the NBP of these tropical savannas at Howard Springs.  相似文献   

19.
In northeastern Canada, at the ecotonal limit of the forest tundra and lichen woodland, a rise of the regional water table in the peatland systems was registered since Little Ice Age resulting in increasing pool compartment at the expense of terrestrial surfaces. We hypothesized that, with a mean water table closer to peat surface and higher pool density, these ecosystems would be great CH4 emitters. In summers 2009 and 2010, methane fluxes were measured in a patterned fen located in the northeastern portion of the La Grande river watershed to determine the contribution of the different microforms (lawns, hollows, hummocks, string, pools) to the annual CH4 budget. Mean seasonal CH4 fluxes from terrestrial microforms ranged between 12.9 and 49.4 mg m?2 day?1 in 2009 and 15.4 and 47.3 mg m?2 day?1 in 2010. Pool fluxes (which do not include ebullition fluxes) ranged between 102.6 and 197.6 mg CH4 m?2 day?1 in 2009 and 76.5 and 188.1 mg CH4 m?2 day?1 in 2010. Highest fluxes were measured in microforms with water table closer to peat surface but no significant relationship was observed between water table depth and CH4 fluxes. Spatially weighted CH4 budget demonstrates that, during the growing season, the studied peatland emitted 66 ± 31 in 2009 and 55 ± 26 mg CH4 m?2 day?1 in 2010, 79 % of which is accounted by pool fluxes. In a context where climate projections predict greater precipitations in northeastern Canada, these results indicate that this type of peatlands could contribute to modify the methane balance in the atmosphere.  相似文献   

20.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号