首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies using stem cells or cancer stem cells have revealed the importance of detecting minor populations of cells in blood or tissue and analyzing their biological characteristics. The only possible method for carrying out such procedures is fluorescence activated cell sorting (FACS). However, FACS has the following limitations. First, cells without an appropriate cell surface marker cannot be sorted. Second, the cells have to be kept alive during the sorting process in order to analyze their biological characteristics. If an intracellular antigen that was specific to a particular cell type could be stained with a florescent dye and then the cells can be sorted without causing RNA degradation, a more simple and universal method for sorting and analyzing cells with a specific gene expression pattern could be established since the biological characteristics of the sorted cells could then be determined by analyzing their gene expression profile. In this study, we established a basic protocol for messenger RNA quantification after FACS (FACS-mQ) targeting intracellular antigens. This method can be used for the detection and analysis of stem cells or cancer stem cells in various tissues.  相似文献   

2.
We developed an in-tube in situ hybridization method for mRNA quantification after fluorescence-activated cell sorting (FACS-mQ). A specific RNA in a particular cell type is stained with a cRNA probe and a fluorescent dye, which allows the stained cells to be selected by FACS without excessive RNA degradation. Our previous protocol required 4 h for hybridization with a cRNA probe, which might not produce enough fluorescence signal for sorting genes with low expressions. We determined the effect of prolonged hybridization for in-tube in situ hybridization on quantitative measurement of intracellular RNAs. During the hybridization step, the quantity of ACTB mRNA decreased gradually until 4 h, but remained constant from 4 to 16 h below 63.6° C. For flow cytometry, cells hybridization with cRNA probes for TG mRNA at 60° C for 16 h showed both increased signal and decreased background fluorescence compared to those hybridized for 4 h. These results indicate that when performing in-tube in situ hybridization, hybridization temperature can be raised to 63.6° C and the hybridization step can be extended up to 16 h without excessive intracellular RNA degradation.  相似文献   

3.
4.
In situ detection of RNA by hybridization with complementary probes is a powerful technique. Probe design is a critical parameter in successful target detection. We have evaluated the efficiency of fluorescent DNA oligonucleotides modified to contain locked nucleic acid (LNA) residues. This increases the thermal stability of hybrids formed with RNA. The LNA-based probes detect specific RNAs in fixed yeast cells with an efficiency far better than conventional DNA oligonucleotide probes of the same sequence. Using this probe design, we were also able to detect poly(A)(+) RNA accumulation within the nucleus/ nucleolus of wild-type cells. LNA-based probes should be readily applicable to a diverse array of cells and tissue samples.  相似文献   

5.
Yang CJ  Wang L  Wu Y  Kim Y  Medley CD  Lin H  Tan W 《Nucleic acids research》2007,35(12):4030-4041
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies.  相似文献   

6.
Fluorescence in situ hybridization (FISH) is a highly useful technique with a wide range of applications including the delineation of complex karyotypes, prenatal diagnosis of aneuploidies, screening for diagnostic or prognostic markers in cancer cells, gene mapping and gene expression studies. However, it is still a fairly time-consuming method with limitations in both sensitivity and resolution. Locked Nucleic Acids (LNAs) constitute a novel class of RNA analogs that have an exceptionally high affinity towards complementary DNA and RNA. Substitution of DNA oligonucleotide probes with LNA has shown to significantly increase their thermal duplex stability as well as to improve the discrimination between perfectly matched and mismatched target nucleic acids. To exploit the improved hybridization properties of LNA oligonucleotides in FISH, we have designed several LNA substituted oligonucleotide probes specific to different human-specific repetitive elements, such as the classical satellite-2, telomere and alpha-satellite repeats. In the present study we show that LNA modified oligonucleotides are excellent probes in FISH, combining high binding affinity with short hybridization time.  相似文献   

7.
8.
Small RNAs have crucial roles in numerous aspects of plant biology. Despite our current understanding of their biogenesis and mechanisms of action, the biological function of small RNAs, particularly miRNAs, remains largely unknown. To decipher small RNA function, knowledge about their spatiotemporal patterns of expression is essential. Here we report an in situ hybridization method for the precise localization of small RNAs in plants by using locked nucleic acid (LNA) oligonucleotide probes. This method has been adapted from protocols used to detect messenger RNAs in formaldehyde-fixed and paraffin-embedded tissue sections, but it includes essential optimizations in key prehybridization, hybridization and posthybridization steps. Most importantly, optimization of probe concentration and hybridization temperature is required for each unique LNA probe. We present the detailed protocol starting from sectioned tissues, and we include troubleshooting tips and recommended controls. This method has been used successfully in several plant species and can be completed within 2-6 d.  相似文献   

9.
We present a novel method using flow cytometry–fluorescence in situ hybridization (flow–FISH) to detect specific messenger RNA (mRNA) in suspended cells using locked nucleic acid (LNA)-modified oligonucleotide probes. β-Actin mRNA was targeted in whole A549 epithelial cells by hybridization with a biotinylated, LNA-modified probe. The LNA bound to β-actin was then stained using phycoerythrin-conjugated streptavidin and detected by flow cytometry. Shifts in fluorescence signal intensity between the β-actin LNA probe and a biotinylated, nonspecific control LNA were used to determine optimal conditions for this type of flow–FISH. Multiple conditions for permeabilization and hybridization were tested, and it was found that conditions using 3 μg/ml of proteinase K for permeabilization and 90 min hybridization at 60 °C with buffer containing 50% formamide allow cells containing the LNA-bound mRNA to be detected and differentiated from the control LNA with high confidence (< 14% overlap between curves). This combined method, called LNA flow–FISH, can be used for detection and quantification of other RNA species as well as for telomerase measurement and detection.  相似文献   

10.
11.
We describe here a new method for highly efficient detection of microRNAs by northern blot analysis using LNA (locked nucleic acid)-modified oligonucleotides. In order to exploit the improved hybridization properties of LNA with their target RNA molecules, we designed several LNA-modified oligonucleotide probes for detection of different microRNAs in animals and plants. By modifying DNA oligonucleotides with LNAs using a design, in which every third nucleotide position was substituted by LNA, we could use the probes in northern blot analysis employing standard end-labelling techniques and hybridization conditions. The sensitivity in detecting mature microRNAs by northern blots was increased by at least 10-fold compared to DNA probes, while simultaneously being highly specific, as demonstrated by the use of different single and double mismatched LNA probes. Besides being highly efficient as northern probes, the same LNA-modified oligonucleotide probes would also be useful for miRNA in situ hybridization and miRNA expression profiling by LNA oligonucleotide microarrays.  相似文献   

12.
Locked nucleic acids (LNA) are being applied in hybridization studies, but current locked nucleotides cannot be transcribed into RNA probes. Here, the authors report the use of a new synthetic locked nucleotide, locMeCytidine-5'-triphosphate (LNA-mCTP), for hybridization study. This synthetic LNA-mCTP can be transcribed into a short ( approximately 30-nt) RNA probe. Dot blot hybridization on nylon membrane suggested that the short (33)P-LNA RNA probes had strong binding affinity to target oligonucleotides and its detection sensitivity was approximately approximately 1000 miRNAs in a 20- to 30-mum (diameter) dot area. On tissue sections, the differential expression pattern of mir-124 within different tissue regions revealed by short (33)P- LNA RNA probes correlated well to that analyzed by real-time RT-PCR. In addition, the specific cellular distribution of vasoactive intestinal polypeptide mRNAs in the mouse brain was the same using a 30-nt (33)P-LNA RNA probe and a 1.5-kb (33)P-RNA probe. These results suggested the high hybridization specificity of the small LNA-RNA probes to target small RNAs. Finally, the authors applied (33)P-LNA probes to detect miRNA let-7C expression in human cancer tissues. Let-7C was clearly present in lung, prostate, and colon cancers but undetectable in ovary and thyroid cancer samples. These results suggested that this miRNA detection method provides an alternative tool to study the cellular distribution of miRNAs in tissues.  相似文献   

13.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

14.
Fluorescence in situ hybridization (FISH) is a powerful technique that is used to detect and localize specific nucleic acid sequences in the cellular environment. In order to increase throughput, FISH can be combined with flow cytometry (flow-FISH) to enable the detection of targeted nucleic acid sequences in thousands of individual cells. As a result, flow-FISH offers a distinct advantage over lysate/ensemble-based nucleic acid detection methods because each cell is treated as an independent observation, thereby permitting stronger statistical and variance analyses. These attributes have prompted the use of FISH and flow-FISH methods in a number of different applications and the utility of these methods has been successfully demonstrated in telomere length determination, cellular identification and gene expression, monitoring viral multiplication in infected cells, and bacterial community analysis and enumeration. Traditionally, the specificity of FISH and flow-FISH methods has been imparted by DNA oligonucleotide probes. Recently however, the replacement of DNA oligonucleotide probes with nucleic acid analogs as FISH and flow-FISH probes has increased both the sensitivity and specificity of each technique due to the higher melting temperatures (T(m)) of these analogs for natural nucleic acids. Locked nucleic acid (LNA) probes are a type of nucleic acid analog that contain LNA nucleotides spiked throughout a DNA or RNA sequence. When coupled with flow-FISH, LNA probes have previously been shown to outperform conventional DNA probes and have been successfully used to detect eukaryotic mRNA and viral RNA in mammalian cells. Here we expand this capability and describe a LNA flow-FISH method which permits the specific detection of RNA in bacterial cells (Figure 1). Specifically, we are interested in the detection of small non-coding regulatory RNA (sRNA) which have garnered considerable interest in the past few years as they have been found to serve as key regulatory elements in many critical cellular processes. However, there are limited tools to study sRNAs and the challenges of detecting sRNA in bacterial cells is due in part to the relatively small size (typically 50-300 nucleotides in length) and low abundance of sRNA molecules as well as the general difficulty in working with smaller biological cells with varying cellular membranes. In this method, we describe fixation and permeabilzation conditions that preserve the structure of bacterial cells and permit the penetration of LNA probes as well as signal amplification steps which enable the specific detection of low abundance sRNA (Figure 2).  相似文献   

15.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

16.
New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2'-O-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2'-O-methyl RNA chimera oligonucleotides "tiny molecular beacons". We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for oskar mRNA and microinjected them into living Drosophila melanogaster oocytes. We then imaged the live oocytes via spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions.  相似文献   

17.
MicroRNAs represent a class of short (approximately 22 nt), noncoding regulatory RNAs involved in development, differentiation, and metabolism. We describe a novel microarray platform for genome-wide profiling of mature miRNAs (miChip) using locked nucleic acid (LNA)-modified capture probes. The biophysical properties of LNA were exploited to design probe sets for uniform, high-affinity hybridizations yielding highly accurate signals able to discriminate between single nucleotide differences and, hence, between closely related miRNA family members. The superior detection sensitivity eliminates the need for RNA size selection and/or amplification. MiChip will greatly simplify miRNA expression profiling of biological and clinical samples.  相似文献   

18.
19.
20.
The antisense therapeutic strategy makes the assumption that sequence-specific hybridization of an oligonucleotide to its target can take place in living cells. The present work provides a new method for the detection of intracellular RNA molecules using in situ hybridization on living cells. The first step consisted in designing nonperturbant conditions for cell permeabilization using streptolysin O. In a second step, intracellular hybridization specificity was evaluated by incorporating various types of fluorescently labeled nucleic acid probes (plasmids, oligonucleotides). Due to its high expression level, the 28S ribosomal RNA was retained as a model. Results showed that: (1) no significant cell death was observed after permeabilization; (2) on living cells, 28S RNA specific probes provided bright nucleoli and low cytoplasmic signal; (3) control probes did not lead to significant fluorescent staining; and (4) comparison of signals obtained on living and fixed cells showed a colocalization of observed fluorescence. These results indicate the feasibility of specific hybridization of labeled nucleic acid probes under living conditions, after a simple and efficient permeabilization step. This new detection method is of interest for investigating the dynamics of distribution of various gene products in living cells, under normal or pathological conditions.Abbreviations PI propidium iodide - SLO streptolysin O  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号