首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.  相似文献   

2.
Testis is one of the most sensitive organs to ionizing radiation. The present study was designed to unravel the possible role of antioxidant proteins, peroxiredoxin I and II (Prx I and II) in the testis. Our results show that Prx I and II are constitutively expressed in the testis and their expression levels are decreased to some extent as the testis develops. Interestingly, immunohistochemical analysis revealed a preferential expression of Prx I and II in Leydig and Sertoli cells, respectively. Neither Prx I nor Prx II expression was obvious in the testicular germ cells including spermatogonia and spermatocytes. Ionizing radiation exerted oxidative stress on the testis and induced apoptosis primarily in the germ cells. When the irradiated testis was examined, the Prx system was found to be transiently up-regulated. Taken together, we suggest that the relative radiation-resistance of Leydig and Sertoli cells could be attributed in part to the antioxidant function of the Prx system in these cells.  相似文献   

3.
4.
Peroxiredoxins (Prx) are a family of antioxidant thioredoxin or glutathione dependent peroxidases. The major functions of Prx comprise modulation of signalling cascades that apply hydrogen peroxide (H(2)O(2)) and cellular protection against oxidative stress. Nothing is known about Prx isoforms in human myocardium. We investigated the protein expression of Prx isoforms 1-6 in human non-failing (NF, donor hearts, n=6, male, age: 53.3+/-2.1 years) and failing myocardium (DCM, orthotopic heart transplantation, dilated cardiomyopathy, n=15, male, 57.0+/-1.7 years). In addition, we performed immunohistochemical stainings and measured Prx 4 mRNA expression levels (RNAse protection assay). The protein expression of Prx 1-2 was similar in NF and DCM. The protein expression of Prx 3-6 and the mRNA-expression of Prx 4 were decreased in DCM. Immunohistochemical analyses provided evidence that all Prx isoforms are present in cardiomyocytes and endothelial cells. Whereas Prx 1-5 staining was more pronounced in endothelial cells, Prx6 staining was more evident in cardiomyocytes. This study provides evidence that Prx are differentially regulated in DCM. The selective downregulation of peroxiredoxin 3-6 isoforms may point towards a subcellular specific dysregulation of the antioxidative defence during the development of DCM.  相似文献   

5.
To determine the role of peroxiredoxin (Prx) in response to oxidative stress and during hypertension in the vasculature, we identified Prx proteins and analyzed their antioxidant effects. Rat aortic smooth muscle contains all six Prxs (I-VI). Prx I, II, and VI shifted to its acidic site on two-dimensional polyacrylamide gel electrophoresis after exposure to H(2)O(2). The total expression of Prx I and VI was increased in response to H(2)O(2). The expression of Prx I, but not that of Prx II and VI, increases and the acidic form of Prx I and the sulfonic acid form of Prx (SO(3)H-Prx) are more strongly expressed in the aortic smooth muscle of hypertensive rats than in that of normotensive control rats. Prxs were also found in the mesenteric artery, heart, and kidney. The expression levels of Prx I and VI were increased in mesenteric artery, but not heart and kidney, from hypertensive rats compared with that from normotensive rats. These results suggest that Prxs play a crucial role against oxidative stress in vascular smooth muscles during hypertension.  相似文献   

6.
-Tochopherol transfer protein ( TTP), a 32 kDa protein exclusively expressed in liver cytosol, has a high binding affinity for -tochopherol. The factors that regulate the expression of hepatic TTP are not clearly understood. In this study, we investigated whether or not exposure to hyperoxia (95% O 2 for 48 h) could alter the expression of hepatic TTP. We also examined the association between the expression of antioxidant enzymes (hepatic glutathione peroxidase (GPX) and Mn-superoxide dismutase (Mn-SOD)) and the expression of hepatic TTP. The levels of thiobarbituric acid-reactive substances (TBARS) in both plasma and liver were significantly higher after rats were exposed to hyperoxia for 48 h when compared with the levels in control rats. Northern blotting showed a decrease in the expression of TTP messenger RNA (mRNA) after hyperoxia, although the TTP protein level remained constant. Expression of Mn-SOD mRNA and protein, as well as the expression of GPX mRNA, were stable after hyperoxia. These findings indicate that mRNA for hepatic TTP, rather than Mn-SOD or GPX, may be highly responsive to oxidative stress.  相似文献   

7.
Thermophilic bacterium Bacillus stearothermophilus TLS33, isolated from a hot spring in Chiang Mai, Thailand, usually produces many enzymes that are very useful for industrial applications. However, the functional properties and mechanisms of this bacterium under stress conditions are rarely reported and still need more understanding on how the bacterium can survive in stress environments. In this study, we examined the oxidative stress induced proteins of this bacterium by proteomic approach combining two-dimensional electrophoresis and mass spectrometry. When the bacterium encountered oxidative stress, peroxiredoxin, as an antioxidant enzyme, is one of the interesting stressed proteins which appeared to be systematically increased with different pI. There are four isoforms of peroxiredoxin, denoted as Prx I, Prx II, Prx III and Prx IV, which are observed at the same molecular weight of 27 kDa but differ in pI values of 5.0, 4.87, 4.81 and 4.79, respectively. The H2O2 concentration directly increased Prx II, Prx III and Prx IV intensities, but decreased Prx I intensity. These shifting of peroxiredoxin isoforms may occur by a post-translational modification. Otherwise, the longer time of oxidative stress had not affected the expression level of peroxiredoxin isoforms. Therefore, this finding of peroxiredoxin intends to know the bacterial adaptation under oxidative stress. Otherwise, this protein plays an important role in many physiological processes and able to use in the industrial applications.  相似文献   

8.
We previously found hydroperoxide-responsive proteins (HPRPs), which are comprised of peroxiredoxin I(Prx I), Prx II, Prx III, Prx VI, HSP27, G3PDH and two unidentified proteins (HPRP-2' and HPRP-5'), in human umbilical vein endothelial cells. It was demonstrated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) that most HPRPs are converted into variants with lower pI upon exposure to hydroperoxides. In this study, we examined the HPRP response on 2D gels upon exposure of human endothelial cells (ECV304) to paraquat (PQ2+), which generates reactive oxygen species (ROS) within cells. PQ2+ exerted cytotoxic effects in a dose- (10μM-10mM) and time- (24-168h) dependent manner. Two-dimensional PAGE analysis revealed that HPRP-2', and oxidized forms of Prx I, Prx II and Prx III were clearly increased upon exposure of cells to sublethal levels of PQ2+. Microsequence analysis revealed that both HPRP-2 and -2' were identical with human DJ-1. Moreover immunoblot analysis confirmed the increase of oxidized forms of Prx II, Prx III and DJ-1 in response to sublethal levels of PQ2+. PQ2+ treatment failed to increase fluorescence intensity derived from DCF, which is believed to be an indicator for intracellular levels of hydroperoxide. Although pentachlorophenol (PCP), an uncoupler of the mitochondrial respiratory chain, clearly elevated the fluorescence, PCP had no effect on HPRP response. These observations indicated that DCF-derived fluorescence is not correlated with HPRP response. We consider that the response of Prxs and DJ-1 on 2D gels could reflect endogenous production of ROS in PQ2+-treated cells, and might be a sensitive indicator of oxidative stress status.  相似文献   

9.
Glioblastomas are notorious for their resistance to ionizing radiation and chemotherapy. We hypothesize that this resistance to ionizing radiation is due, in part, to alterations in antioxidant enzymes. Here, we show that rat and human glioma cells overexpress the antioxidant enzyme peroxiredoxin II (Prx II). Glioma cells in which Prx II is decreased using shRNA exhibit increased hyperoxidation of the remaining cellular Prxs, suggesting that the redox environment is more oxidizing. Of interest, decreasing Prx II does not alter other antioxidant enzymes (i.e., catalase, GPx, Prx I, Prx III, CuZnSOD, and MnSOD). Analysis of the redox environment revealed that decreasing Prx II increased intracellular reactive oxygen species in 36B10 cells; extracellular levels of H(2)O(2) were also increased in both C6 and 36B10 cells. Treatment with H(2)O(2) led to a further elevation in intracellular reactive oxygen species in cells where Prx II was decreased. Decreasing Prx II expression in glioma cells also reduced clonogenic cell survival following exposure to ionizing radiation and H(2)O(2). Furthermore, lowering Prx II expression decreased intracellular glutathione and resulted in a significant decline in glutathione reductase activity, suggesting a possible mechanism for the observed increased sensitivity to oxidative insults. Additionally, decreasing Prx II expression increased cell cycle doubling times, with fewer cells distributed to S phase in C6 glioma cells and more cells redistributed to the most radiosensitive phase of the cell cycle, G2/M, in 36B10 glioma cells. These findings support the hypothesis that inhibiting Prx II sensitizes glioma cells to oxidative stress, presenting Prxs as potential therapeutic targets.  相似文献   

10.
Superoxide dismutases (SODs) are important antioxidant enzymes responsible for the elimination of superoxide radical (O(2)(-)). The manganese-containing SOD (Mn-SOD) has been suggested to have tumor suppressor function and is located in the mitochondria where the majority of O(2)(-) is generated during respiration. Although increased reactive oxygen species (ROS) in cancer cells has long been recognized, the expression of Mn-SOD in cancer and its role in cancer development remain elusive. The present study used a human tissue microarray to analyze Mn-SOD expression in primary ovarian cancer tissues, benign ovarian lesions, and normal ovary epithelium. Significantly higher levels of Mn-SOD protein expression were detected in the malignant tissues compared with normal tissues (p < 0.05). In experimental systems, suppression of Mn-SOD expression by small interfering RNA caused a 70% increase of superoxide in ovarian cancer cells, leading to stimulation of cell proliferation in vitro and more aggressive tumor growth in vivo. Furthermore, stimulation of mitochondrial O(2)(-) production induced an increase of Mn-SOD expression. Our findings suggest that the increase in Mn-SOD expression in ovarian cancer is a cellular response to intrinsic ROS stress and that scavenging of superoxide by SOD may alleviate the ROS stress and thus reduce the simulating effect of ROS on cell growth.  相似文献   

11.
12.
Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances.  相似文献   

13.
Peroxiredoxins (Prxs) are a family of multifunctional antioxidant thiol-dependent peroxidases. This study aimed to examine the regulatory mechanisms of Prx gene expression in murine bone marrow-derived macrophages (BMMs) using standardized serum-free conditions. Stimulation with LPS and IFNγ increased mRNA levels of Prx 1, 2, 4, 5, and 6 in BMMs of both C57BL/6 and BALB/c mice, with Prx 1, 2, 4, and 6 more strongly induced in C57BL/6 BMMs. Further investigations on signaling pathways in C57BL/6 BMMs demonstrated that up-regulation of Prx 5 and 6 by LPS and IFNγ was associated with the activation of multiple protein kinases, most notably JAK2, PI3K, and p38 MAPK. Our experiments also revealed a contribution of inducible NO synthase-derived nitric oxide to the increase in Prx 1, 2, 4, and 6 mRNA expression, whereas NADPH oxidase-derived superoxide was not involved. Furthermore, we could show that LPS- and IFNγ-induced gene expression of Prx 6 was also regulated in an NO-independent manner by cyclooxygenases and prostaglandin E2. Taken together our results indicate a possible role for Prxs in defense mechanisms of activated macrophages against oxidative stress during inflammation or infection.  相似文献   

14.
We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. Consistent with this, p35-/- neurons show reduced oxidative stress upon MPP+ treatment. Expression of Prx2 and Prx2T89A, but not the phosphorylation mimic Prx2T89E, protects cultured and adult neurons following mitochondrial insult. Finally, downregulation of Prx2 increases oxidative stress and sensitivity to MPP+. We propose a mechanistic model by which mitochondrial toxin leads to calpain-mediated Cdk5 activation, reduced Prx2 activity, and decreased capacity to eliminate ROS. Importantly, increased Prx2 phosphorylation also occurs in nigral neurons from postmortem tissue from Parkinson's disease patients when compared to control, suggesting the relevance of this pathway in the human condition.  相似文献   

15.
Patterns of expression of the 2-Cys and 1-Cys peroxiredoxin (Prx) proteins of the rodent malaria parasite Plasmodium yoelii during its life cycle were observed by immunofluorescent antibody staining and confocal laser scanning microscopy. 2-Cys Prx was expressed in the parasite cytoplasm throughout the life cycle, and the thioredoxin (Trx)-peroxidase activity of 2-Cys Prx revealed with the recombinant protein suggested that the Prx is constitutively expressed and, thus, likely plays a housekeeping role in the parasite's intracellular redox control. In contrast, 1-Cys Prx showed stage-specific expression in blood-stage parasites. The limited expression of 1-Cys Prx in the trophozoite cytoplasm suggests that 1-Cys Prx may be involved in haemoglobin metabolism by the parasite, which generates a prooxidative haem iron and increases intracellular oxidative stress. The antioxidant activity of 1-Cys Prx was tested for its ability to protect yeast enolase against inactivation of the mixed-function oxidation system. Differential expression of the two Prx proteins during the erythrocytic and insect stages suggests the importance of these proteins in protecting parasites against oxidative stress, which is generated by the parasite's metabolism and also from the environment.  相似文献   

16.
Manganese superoxide dismutase (Mn-SOD) plays an important role in attenuating free radical-induced oxidative damage. The purpose of this research was to determine if increased expression of Mn-SOD gene alters intracellular redox status. Twelve week old male B6C3 mice, engineered to express human Mn-SOD in multiple organs, and their nontransgenic littermates were assessed for oxidative stress and antioxidant status in heart, brain, lung, skeletal muscle, liver, and kidney. Relative to their nontransgenic littermates, transgenic mice had significantly (p <.01) higher activity of Mn-SOD in heart, skeletal muscle, lung, and brain. Copper, zinc (Cu,Zn)-SOD activity was significantly higher in kidney, whereas catalase activity was lower in brain and liver. The activities of selenium (Se)-GSH peroxidase and non-Se-GSH peroxidase, and levels of vitamin E, ascorbic acid and GSH were not significantly different in any tissues measured between Mn-SOD transgenic mice and their nontransgenic controls. The levels of malondialdehyde were significantly lower in the muscle and heart of Mn-SOD mice, and conjugated dienes and protein carbonyls were not altered in any tissues measured. The results obtained showed that expression of human SOD gene did not systematical alter antioxidant systems or adversely affect the redox state of the transgenic mice. The results also suggest that expression of human SOD gene confers protection against peroxidative damage to membrane lipids.  相似文献   

17.
18.
Parecoxib, a novel COX-2 inhibitor, functions as a neuroprotective agent and rescues neurons from cerebral ischemic reperfusion injury-induced apoptosis. However, the molecular mechanisms underlying parecoxib neuroprotection remain to be elucidated. There is growing evidence that endoplasmic reticulum (ER) stress plays an important role in neuronal death caused by brain ischemia. However, very little is known about the role of parecoxib in mediating pathophysiological reactions to ER stress induced by ischemic reperfusion injury. Therefore, in the present study, we investigated whether delayed administration of parecoxib attenuates brain damage via suppressing ER stress-induced cell death. Adult male Sprague–Dawley rats were administered parecoxib (10 or 30 mg kg?1, IP) or isotonic saline twice a day starting 24 h after middle cerebral artery occlusion (MCAO) for three consecutive days. The expressions of glucose-regulated protein 78 (GRP78) and oxygen-regulated protein 150 (ORP150) and C/EBP-homologous protein (CHOP) and forkhead box protein O 1 (Foxo1) in cytoplasmic and nuclear fraction were determined by Western blotting. The levels of caspase-12 expression were checked by immunohistochemistry analysis, served as a marker for ER stress-induced apoptosis. Parecoxib significantly suppressed cerebral ischemic injury-induced nuclear translocation of CHOP and Foxo1 and attenuated the immunoreactivity of caspase-12 in ischemic penumbra. Furthermore, the protective effect of delayed administration of parecoxib was accompanied by an increased GRP78 and ORP150 expression. Therefore, our study suggested that elevation of GRP78 and ORP150, and suppression of CHOP and Foxo1 nuclear translocation may contribute to parecoxib-mediated neuroprotection during ER stress responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号