共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G U Ryffel 《European journal of biochemistry》1976,62(2):417-423
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm. 相似文献
3.
The analysis by the approach to equilibrium labeling method has shown that the poly(A)+ fraction of liver hnRNA is not a uniform class of molecules, but is comprised of two distinct subclasses with half-lives of 5 and 60 min, while the poly(A)- hnRNA was metabolically homogeneous and turned over with a rather uniform half-life of 30 min. The results suggest that (a) poly(A) synthesis and addition is not limiting for the rate of hnRNA processing, and (b) there is a correlation between the kinetics of mRNA appearance in the cytoplasm and kinetic behavior of their possible nuclear precursors. 相似文献
4.
J L Nichols 《Biochimica et biophysica acta》1979,563(2):490-495
Poly(A)-containing RNA was isolated from maize embryos by chromatography on columns of oligo(dT)-cellulose and exhaustively digested with ribonucleases T2, T1, and A. Fractionation of the digests by two-dimensional electrophoresis revealed the presence of three 7-methylguanosine-terminated 'cap structures' of the type m7GpppNp. 相似文献
5.
6.
Cultured sycamore cells rapidly incorporate [3H]uridine or [32P]orthophosphate into rRNA precursors and polydisperse RNA. Mature rRNA accumulates only after a lag period of approximately 40 min. Fractionation of pulse-labelled cells and analysis of the RNA shows that after 30 min the rRNA precursors, together with some polydisperse RNA, are confined to the nucleus. In consequence radioactive polydisperse RNA can be isolated from polyribosomes in the complete absence of labelled rRNA. Approximately 40% of this RNA is retained by an oligo(dT)-cellulose column and by this criterion is judged to contain poly(A) sequences. A smaller proportion of nuclear polydisperse RNA also contains poly(A). The tendency for poly(A)-containing RNA to aggregate complicates molecular weight determinations. Denaturation of poly(A)-containing RNA in 8 M urea prior to gel electrophoresis produces a broad peak of RNA with an average Mr = 10(6). Analysis of the nucleotide composition of total cell poly(A)-containing RNA shows that it contains 41% AMP. Roughly 6% of this RNA is resistant to digestion by ribonuclease A and T1. AMP is the only nucleotide detectable in these fragments. From their mobility during electrophoresis in 8 M urea at 60 degrees C with 5.8-S, 5-S and tRNA as molecular weight markers it is concluded that the poly(A) regions contain an average of 160 nucleotides. 相似文献
7.
Relative distribution of post-nuclear poly(A)-containing RNA abundance groups within the nuclear and post-nuclear polyadenylated and non-polyadenylated RNA populations of the lactating guinea-pig mammary gland 下载免费PDF全文
Ian C. Bathurst Roger K. Craig David G. Herries Peter N. Campbell 《The Biochemical journal》1980,192(2):489-498
8.
The extent to which the poly(A)(+)RNA sequence complexity from sea-urchin embryos is also represented in poly(A)(-)RNA was determined by cDNA cross-hybridization. Eighty percent or more of both the cytoplasmic poly(A)(+)RNA and polysomal poly(A)(+)RNA sequences appeared in a poly(A)(-) form. In both cases, the cellular concentrations of the poly(A)(-)RNA molecules that reacted with the cDNA were similar to the concentrations of the homologous poly(A)(+) sequences. Additionally, few, if any, abundant poly(A)(+)mRNA molecules were quantitatively discriminated by polyadenylation, since the abundant poly(A)(+)sequences were also abundant in poly(A)(-)RNA. Neither degradation nor inefficient binding to oligo (dT)-cellulose can account for the observed cross-reactivity. These data indicate that, in sea-urchin embryos, the poly(A) does not regulate the utilization of mRNA by demarcating an mRNA subset that is specifically and completely polyadenylated. 相似文献
9.
10.
Three fractions of poly(A)-containing RNA were separated from total rat liver RNA using poly(U)-Sepharose 4B affinity chromatography. The poly(A)-containing RNA fractions were released by thermal elution. Fraction 1, eluted under the mildest conditions, and had poly(A) tracts of approx. 200 AMP units in length which appeared to be associated with poly(U) sequences of 20-50 UMP in length. Fraction 1 appeared to be present mainly in the nucleus and, its size distribution was similar to that of fractions 2 and 3. Fractions 2 and 3 eluted at higher temperatures and were associated mainly with polysomal and microsomal fractions. Poly(U) sequences were absent in fractions 2 and 3 while their poly(A) sequences had a size distribution characteristic of those reported in the mRNA of other organisms. 相似文献
11.
12.
To investigate poly(A)-lacking mRNA in mouse kidney, we studied a fraction of renal mRNA that does not bind to oligo(dT)-cellulose but can be purified by benzoylated cellulose chromatography. Nominal poly(A)-lacking mRNA and poly(A)-containing mRNA have complete nucleotide sequence homology, suggesting that kidney does not contain mRNAs that are not represented in the polyadenylated RNA fraction. Translation products directed by nominal poly(A)-lacking mRNA and poly(A)-containing mRNA are qualitatively and quantitatively similar in one-dimensional polyacrylamide gels. [3H]cDNA transcribed from poly(A)-containing mRNA hybridizes with its template and with nominal poly(A)-lacking mRNA to the same extent (95%) and with the same kinetics; reaction of [3H]cDNA to nominal poly(A)-lacking mRNA with the two mRNA populations gives the same result. The extensive homology these two mRNA populations share is important to the interpretation of mRNA lifetime and to the analysis of authentic poly(A)-lacking mRNAs. 相似文献
13.
14.
15.
Chloroplasts were isolated from spinach leaves and the intact chloroplasts separated by centrifugation on gradients of silica sol. Chloroplasts prepared in this way were almost completely free of cytoplasmic rRNA. The purified chloroplasts were incubated with 32PO4 in the light. The nucleic acids were then extracted and the RNA was fractionated into poly(A)-lacking RNA and poly(A)-containing RNA (poly(A)-RNA) via oligo(dT)-cellulose chromatography. The poly(A)-RNA had a mean size of approximately 18--20 S as determined by polyacrylamide gel electrophoresis. The poly(A)-RNA was digested with RNase A and RNase T1, and the resulting poly(A) segments were subjected to electrophoresis on a 10% w/v polyacrylamide gel 98% v/v formamide). Radioactivity was incorporated into both poly(A)-RNA and poly(A)-lacking RNA and into the poly(A) segments themselves. The poly(A) segments were between 10 and 45 residues long and alkaline hydrolysis of poly(A) segments followed by descending paper chromatography showed that they were composed primarily of adenine residues. There was no 32PO4 incorporation into acid-insoluble material in the dark. We conclude that isolated chloroplasts are capable of synthesizing poly(A)-RNA. 相似文献
16.
Methylated constituents of Aedes albopictus poly (A)-containing messenger RNA. 总被引:2,自引:0,他引:2 下载免费PDF全文
Poly (A)-containing mRNA prepared from cultured mosquito (Aedes albopictus) cells was found to contain methylated 5'-terminal "caps" as well as internal m6A residues. Both type I [m7G(5')ppp(5')Xmp] and type II [m7G(5')ppp(5')XmpYmp] caps were present, at molar ratio of ca five to one. All four common RNA bases were represented in the second position (Xm) of the caps, adenine being the most abundant and N6-methyladenine being absent. The four bases were also represented in the third position (Ym), but here uracil was the predominant base. There was approximately one internal m6A residue for every three caps. These studies demonstrate that mRNA from an invertebrate source can have a methylation pattern comparable with that of mammalian cells in it complexity. 相似文献
17.
Comparison of polysomal and nuclear poly(A)-containing RNA populations from normal rat liver and Novikoff hepatoma. 总被引:2,自引:1,他引:2 下载免费PDF全文
Polysomal and nuclear poly(A)-containing RNA of normal rat liver and Novikoff hepatoma cells have been compared by cDNA.RNA hybridization kinetics. Homologous hybridization reactions revealed at total kinetic complexity of about 1.6 X 10(10) and 1.38 X 10(10) daltons for liver and Novikoff mRNA respectively. The high abundance component present in liver cannot be detected in Novikoff. It was found from heterologous reactions that about 30% by weight of mRNA sequences are specific to liver. Determination of the nuclear poly(A)-containing RNA complexities revealed that about 5.5% and 4% of the haploid genome is expressed in the liver and Novikoff respectively. In a heterologous reaction, up to 30% of the liver cDNA failed to form hybrids with Novikoff nuclear RNA. Cross hybridizations have further revealed abundance shifts in both nuclear and polysomal RNA populations. Some sequences abundant in liver are less abundant in Novikoff and some rare liver sequences are relatively abundant in Novikoff. 相似文献
18.
Poly(A)-containing RNA was isolated by cellulose column chromatography from total RNA extracted from Chlorella fusca var. vacuolata 211/8p. RNA retained by the column was identified as poly(A)-containing RNA because it contained ribonuclease-resistant tracts, 25 to 55 nucleotides in length, from which not less than 80% of base was found to be adenine after acid hydrolysis. The base composition of poly(A)-containing RNA differed from that of RNA (largely ribosomal) which did not adsorb to cellulose, having a higher adenine content and a lower guanine content. Poly(A)-containing RNA was polydisperse including molecules with mobilities from 10S to 40S with a mean of about 20S. In an in vitro system derived from wheat-germ, protein synthesis was stimulated by adding poly(A)-containing RNA from Chlorella. Optimum conditions were established in this system with respect to the amount of poly(A)-containing RNA added and the concentration of KCl and Mg-2+. It is proposed that, in Chlorella, poly(A)-containing RNA includes cytoplasmic mRNA as has been shown for some other eucaryotic organisms. 相似文献
19.
M C MacLeod 《Analytical biochemistry》1975,68(1):299-310
Estimates of the weight average molecular weight of mouse myeloma cell cytoplasmic poly(A)(+)RNA obtained by polyacrylamide-gel electrophoresis and by sucrose gradient sedimentation differ by a factor of two. This difference is not due to degradation of the RNA molecules during sedimentation nor to acid poly(A) double helix formation during electrophoresis. The difference is probably due, at least in part, to the presence of poly(A) sequences in the RNA molecules. 相似文献
20.
G. P. Siegal C. P. Hodgson P. K. Elder L. S. Stoddard M. J. Getz 《Journal of cellular physiology》1980,103(3):417-428
Five to six percent (by mass) of AKR-2B mouse embryo cell polysomal RNA consists of messenger RNA sequences which may exist in polyadenylated form. In the steady state, however, only 30–40% of these molecules are retained by extensive passage over oligo(dT)-cellulose, the remainder being present in the form of poly(A)-deficient analogues. Within experimental limits, these poly(A)-deficient analogues contain representatives of all poly(A)-containing mRNA sequences in these cells. An analysis of the kinetics of hybridization of cDNA probes enriched for either abundant or rare poly(A)-containing mRNA sequences suggests that the frequency distributions of poly(A)-containing and poly(A)-deficient analogues are dissimilar, and that a relationship exists between the intracellular frequency of a given mRNA sequence and the number of poly(A)-deficient analogues of that sequence. High frequency sequences appear to be enriched in the poly(A)-containing fraction, while low frequency sequences are predominately associated with the poly(A)-deficient fraction, thus, poly(A) may play a role in the regulation of mRNA frequency in the cytoplasm. 相似文献