首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The role of glucocorticoids on adipose conversion has been studied using confluent Ob1771 mouse preadipose cells maintained in a serum-free culture medium able to support the emergence of early but not that of late markers of differentiation. Under these culture conditions, glucocorticoids play, at physiological concentrations, a permissive role for terminal differentiation, characterized by glycerol-3-phosphate dehydrogenase expression and triacylglycerol accumulation within 12 days, whereas progesterone, testosterone, and estradiol are inactive. Glucocorticoids behave as mitogenic-adipogenic stimuli able to trigger growth-arrested, early marker-expressing cells to enter the terminal phase of the differentiation program and thus appear to mimic the mitogenic-adipogenic activity already described for arachidonic acid and cyclic AMP-elevating agents, especially prostacyclin. When compared to corticosterone alone, exposure of Ob1771 cells to both corticosterone and arachidonic acid leads to an additional increase in the glycerol-3-phosphate dehydrogenase activity and number of differentiated cells; this potentiation is further enhanced when the culture medium is supplemented with the cyclic AMP phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. This suggests indirectly the involvement of prostacyclin as a metabolite of arachidonic acid able to induce cyclic AMP accumulation. In agreement with this hypothesis, it is found that a promoting effect is exerted by corticosterone on the metabolism of arachidonic acid, leading in turn to an increase in the production of prostacyclin. These findings allow a better understanding of the role of glucocorticoids on adipose cell differentiation and explain a posteriori the effectiveness of the combination of dexamethasone-isobutyl-methylxanthine used in innumerable studies.  相似文献   

2.
A serum-free, hormone-supplemented medium (SFHM) for maintaining neonatal rat heart cells in culture has been developed in this laboratory (Mohamed et al., 1983). Morphological assessment of heart cells grown in SFHM show it to be similar to commonly used serum-supplemented media. To quantitatively compare cell behavior in SFHM with serum-supplemented media, the activities of ten regulatory enzymes which represent four metabolic pathways were studied in heart cells cultured in SFHM. The enzyme activities which were measured included hexokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, phosphofructokinase, pyruvate kinase, NAD+-linked sn-glycerol-3-phosphate dehydrogenase, malate dehydrogenase, NAD+-linked isocitrate dehydrogenase, NADH-cytochrome c reductase, and succinic cytochrome c reductase. Rat heart cells maintained in culture on SFHM are not only qualitatively and quantitatively similar to those maintained in serum-supplemented medium but also provide a more suitable model system for metabolic studies of neonatal cardiac tissue for several reasons: 1) many enzyme activities that may represent dedifferentiation are elevated by serum; 2) NAD-linked glycerol-3-phosphate dehydrogenase activity in cells maintained on SFHM is similar to the in vivo activity; 3) cells beat at or near the in vivo frequency and can be maintained 3 months on SFHM; 4) the SFHM is chemically defined and thus can be completely manipulated by the investigator. The effects of three concentrations of hydrocortisone (HC) (5,000 ng/ml, 50 micrograms/ml, 0 ng/ml) on heart cells cultured in SFHM supported our previous conclusion that function (beating) and growth (protein accumulation) are inversely related in cultured neonatal rat heart cells.  相似文献   

3.
The effects of exposure of glial cells in primary culture and in continuous line (clone NN) to pentobarbital over various periods of time on cellular respiration and activities of enzymes involved in carbohydrate metabolism were studied. The results obtained in glial cells in primary culture were qualitatively identical to those obtained in glial cells in clonal line (NN). Both types of glial cells were shown to develop biochemical tolerance to pentobarbital as defined by an attenuated response to the depressant effects of a challenging dose of pentobarbital on cellular respiration in barbiturate-cultivated cells compared to those grown in drug-free medium. The biochemical tolerance was evident in the presence of glucose and succinate but not malate as substrate. This tolerance to pentobarbital was accompanied by increased activities of hexokinase, glucose-6-phosphate dehydrogenase, succinate dehydrogenase, and glutamate dehydrogenase and by a marked increase in the number of glial cell mitochondria as observed in electron micrographs. The results are interpreted to indicate a compensation of glial cells to the continuous presence of PB by an accelerated glucose uptake and metabolism, an accelerated metabolism of succinate, and an increased mitochondrial activity.  相似文献   

4.
The hormonal interactions that regulate electrolyte transport in the proximal tubule are complex and incompletely understood. Since endogenous glucocorticoids and angiotensin II each can affect electrolyte transport in this renal segment, we hypothesized that local metabolism of glucocorticoids by the enzyme 11beta-hydroxysteroid dehydrogenase (11beta-HSD) might alter the response to angiotensin II. Studies were conducted in cultured origin defective SV-40 transformed immortalized renal proximal tubule cells (IRPTC) derived from weanling Wistar rat kidney. The 11beta-HSD contained in these cells uses NADP+, has an apparent Km for corticosterone of 1.6 microM, but functions only as a dehydrogenase (corticosterone --> 11-dehydro-corticosterone). When mounted in modified Ussing chambers, IRPTC generate a transmembrane current, and angiotensin II (10 pM to 10 microM) increases this sodium-dependent current. Cells incubated with corticosterone (100 nM) and the 11beta-HSD inhibitor carbenoxolone (CBX) (1 microM) for 24 hr and then acutely stimulated with angiotensin (10 nM) show a greater rise in current than do cells exposed to corticosterone alone and stimulated with angiotensin (corticosterone + CBX: 64.2% +/- 20.5% vs. corticosterone: 18.8% +/- 5.9%; P < 0.02 at 180 min)[mean +/- SE percentage above baseline, n = 8/group]. Cells exposed to corticosterone (100 nM) or CBX (1 microM) alone for 24 hr and then stimulated with angiotensin II (10 nM) had responses similar to controls. Thus glucocorticoids can enhance angiotensin II-induced electrolyte transport in proximal tubule epithelial cells when local 11beta-HSD is inhibited.  相似文献   

5.
Two genes involved in central carbon metabolism were inactivated to modulate intracellular glucose 6-phosphate and to evaluate its effects on xanthan production in wild-type Xanthomonas oryzae pv. oryzae. Upon the inactivation of the phosphogluconate dehydratase gene (edd), intracellular glucose 6-phosphate increased from 0.05 to 1.17 mmol/g (dry cell wt). This was accompanied by increased xanthan production of up to 2.55 g/l (culture medium). In contrast, inactivation of 6-phosphogluconate dehydrogenase gene (gndA) did not influence intracellular glucose 6-phosphate nor xanthan production. The intracellular availability of glucose 6-phosphate is proposed as a rate-limiting factor in xanthan production, and it may be possible to increases production of xanthan by modulating the activities of enzymes in central carbon metabolism.  相似文献   

6.
The hormonal and nutritional regulation of glucose 6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) was studied in primary cultures of rat hepatocytes maintained in a chemically defined medium. Inoculation of hepatocytes from starved rats into primary cultures resulted in a 4-5-fold increase in G6PDH activity in 48 h in the absence of hormones. Parallel cultures treated simultaneously with glucocorticoids and insulin exhibited a 12-15-fold increase during the same time. Glucocorticoids by themselves did not elevate G6PDH activity, whereas insulin alone significantly stimulated enzyme activity. Thus the glucocorticoids acted in a 'permissive' role to amplify the insulin stimulation of G6PDH. Elevated concentrations of glucose in the culture medium increased enzyme activity in both the control cultures and those treated with hormones. Ethanol was found to potentiate G6PDH activity in cultures treated with glucocorticoids and insulin. The effect of ethanol was time- and dose-dependent. These results establish that insulin, glucocorticoids, glucose and ethanol interact in some undefined manner to regulate hepatic G6PDH activity.  相似文献   

7.
Growth, expression of functional differentiation (as characterized by synthesis and secretion of milk proteins), and primary metabolism were studied for a mouse mammary epithelial cell line, COMMA-1D, in extended-batch and hollow-fiber reactor cultures. Batch cultures were performed on Costar polycarbonate membrane inserts, allowing basal and apical exposure to medium. Protein production was induced in both batch and hollow-fiber cultures in hormonesupplemented medium. In batch cultures, high levels of protein production and secretion were maintained for 18 days. Once differentiation was induced, the rate of deinduction was low, even in medium containing epidermal growth factor (EGF) and serum; cells continued to express and secrete proteins for at least 12 days after prolactin and hydrocortisone were removed. Cells in both batch and hollow-fiber cultures were highly glycolytic and exhibited low rates of glutaminolysis. In batch culture on membrane inserts, cells showed polarized metabolism between the apical and basal side, maintaining significant gradients of glucose and lactate. Medium hormonal composition and subsequent differentiation affected both glucose uptake and lactate yield for COMMA-1D in batch culture. (c) 1992 John Wiley & Sons, Inc.  相似文献   

8.
The effects of physiological glucocorticoids such as cortisol and corticosterone, as well as dexamethasone, on proliferation and differentiation of rat fat cell precursors kept in primary culture were analyzed. In serum-containing medium (10%), glucocorticoids markedly decreased cell proliferation, either on subconfluent or on confluent cultures. This effect was independent of the presence of insulin. In contrast, acute amplification of adipose conversion was observed mainly when glucocorticoids and insulin were added simultaneously. Morphological quantification of lipid-containing cells confirmed acceleration of the maturation process, and an early and specific reorganization of the cytoskeleton was detected at the ultrastructural level. In the presence of insulin, glucocorticoids also enhanced the main marker enzymes, lipoprotein lipase, and glycerol phosphate dehydrogenase. Glucocorticoid effects on precursor proliferation and differentiation were clearly dose-dependent, dexamethasone being 10 times more potent than cortisol and corticosterone. Similar results were obtained in serum-free medium, as well as in preadipocyte cultures derived from different fat deposits. This study demonstrates that in addition to an acute inhibition of precursor growth, glucocorticoids exert a clear stimulation of adipose conversion, which depends mainly on the presence of insulin and the glucocorticoid concentration.  相似文献   

9.
Previous studies have shown that cytosolic glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) can be induced by glucocorticoids in mammalian brain, mammary gland, and thymus, but it was thought that no induction occurred in liver. We report here that GPDH is induced by glucocorticoids in several lines of hepatoma cells and in rat hepatocytes cultured in vitro. When rat hepatoma cells of clone FU5AH were exposed to 3 μM hydrocortisone (HC) for 3 days, GPDH specific activity increased greater than sixfold over control. The rate and extent of induction were similar in exponentially growing and stationary-phase cultures of cells. Four other hepatoma cell lines were inducible to a lesser extent, and three lines were not inducible. GPDH was also induced by glucocorticoids in cultures of hepatocytes isolated from livers of 6-day-old rats. The enzyme was induced threeto fourfold by the synthetic glucocorticoid, dexamethasone, in the presence of 1 nM insulin, but the induction was not observed in the absence of insulin.  相似文献   

10.
The effect of the relative concentrations of citrate and glucose on the regulation of key enzymes of the direct oxidative, phosphorylative, Entner-Doudoroff and pentose-cycle pathways of glucose metabolism in Pseudomonas aeruginosa has been investigated in continuous culture under conditions of NH(4) (+)-limitation. For comparison isocitrate dehydrogenase and aconitase were also assayed. Measurements were made for steady-state and transient conditions and the effect of growth rate was also studied. When cells grew on 75mm-citrate the glucose concentration had to attain 6-8mm before significant induction of enzymes of glucose metabolism occurred; the specific activities increased further as the result of both raising the glucose concentration to 30mm and then subsequently lowering the citrate to 60mm and then to 45mm. The specific activities of the glucose enzymes increased immediately during the transient period between the steady states characteristic of growth on 6mm- and 8mm-glucose, the increase continuing for about two doubling times. The converse experiment of adding increasing citrate concentrations to 45mm-glucose medium revealed an immediate induction of the citrate-transport system, oxidation of citrate following the increase in citrate concentration up to 8mm. Between 8mm- and 16mm-citrate a marked repression of gluconate, glucose 6-phosphate and 6-phosphogluconate dehydrogenases and the Entner-Doudoroff enzymes occurred. Increased growth rate in citrate medium resulted in decreased specific activities of glucose 6-phosphate dehydrogenase and isocitrate dehydrogenase. Increased growth rate in citrate-glucose medium gave decreased specific activities of isocitrate dehydrogenase and aconitase whereas the activities of some of the glucose enzymes decreased initially but then increased at the highest growth rate (0.5h(-1)), at which a marked increase in glucose utilization occurred. These observations accord with the regulation of glucose enzymes by induction with glucose or its metabolites and repression by citrate or its metabolic products.  相似文献   

11.
Hepatocytes isolated from normal adult rats were cultured under serum-free conditions. Induction of mitochondrial alpha-glycerophosphate dehydrogenase (glycerol 3-phosphate dehydrogenase) (EC 1.1.99.5; sn-glycerol-3-phosphate: (acceptor) oxidoreductase) and cytosolic malic enzyme (EC 1.1.1.40; L-malate-NADP+ oxidoreductase (decarboxylating)) by 3,3'-5-triiodo-L-thyronine (triiodothyronine) in the culture medium follows the same time course as the in vivo response to thyroid hormones. The addition of 1 microM cycloheximide blocks the triiodothyronine response. Thyroxine is also capable of stimulating the activities of both enzymes. Although increases in alpha-glycerophosphate dehydrogenase and malic enzyme activities are observed when triiodothyronine is added to the culture medium for 3 days (62% and 36%, respectively), in the presence of insulin and cortisol the response is significantly greater. Dexamethasone is more potent than cortisol in increasing triiodothyronine action. In the presence of bovine serum albumin, to prevent metabolism of triiodothyronine, hepatocytes show increased enzyme activity at concentrations as low as 10(-10) M triiodothyronine.  相似文献   

12.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

13.
The effect of the glucocorticoids, insulin, and glucose concentration on glycogen deposition in adult rat liver parenchymal cells maintained in a chemically defined, serum-free medium has been studied. Increasing the medium concentration of glucose from 5.6 mM to 30.6mM in the absence of hormones increased cellular glycogen content from 6.5 to 51 μg of glycogen per mg of cell protein. Treatment of the cells with insulin increased the glycogen content by 15 to 30% at medium glucose concentrations above 10.6 mM. The addition of the synthetic glucocorticoid, dexamethasone, to the culture medium resulted in 40 to 105% increases in glycogen content at glucose concentrations greater than 5.6 mM. The addition of dexamethasone and insulin together in the culture medium resulted in an increase in glycogen content that was greater than the additive effect of each hormone alone. This established that glucose concentrations above 10.6 mM stimulate glycogen deposition in the absence of any hormonal stimulus. In addition, glucocorticoids directly stimulate glycogen deposition at glucose concentrations which are greater than physiological (5.6 mM).  相似文献   

14.
Abstract— Free radicals are generated in the CNS by ongoing oxygen metabolism and biological events associated with injury and inflammation. Increased free radical levels may also persist in some chronic neurological diseases and in the aged. Nerve growth factor (NGF) is a member of the neurotrophin family of proteins that can regulate neuronal development, maintenance, and recovery from injury. NGF protected rat pheochromocytoma PC12 cells, an adrenal chromaffin-like NGF-responsive cell line, from the oxidant stress accompanying hydrogen peroxide treatment by stimulating GSH levels and enzymes in the GSH metabolism cycle and in the GSH/GSH peroxidase antioxidant redox system, a ubiquitous cellular antioxidant system. Specifically, NGF increased γ-glutamylcysteine synthetase (GCS) activity, the rate-limiting enzyme for GSH synthesis, by 50% after 9h and GSH levels by 100% after 24 h of treatment. NGF stimulated GSH peroxidase by 30% after 3 days and glucose 6-phosphate dehydroge-nase by 50% after 2 days. Treatment with NGF and cyclo-heximide, or actinomycin D, which inhibit protein and RNA synthesis, respectively, blocked the NGF stimulation of GCS and glucose 6-phosphate dehydrogenase. Increased GSH levels due to NGF treatment were responsible for the significant protection of PC12 cells from hydrogen peroxide-induced stress. Pretreatment of PC12 cells with NGF for 24 h rescued cells from the toxic effects of the extracellular hydrogen peroxide generated by the glucose/glucose oxidase system but did not rescue cells that were subjected to GSH deprivation due to treatment with 10 μMl -buthionine-(S,R)-sulfoximine, an inhibitor of GCS. However, treatment with 10 μMl -buthionine-(S,R)-sulfoximine alone did not affect PC12 cell viability, NGF stimulation of neurite extension, and NGF induction of GCS, GSH peroxidase, and glucose 6-phosphate dehydrogenase activity. When GSH levels were measured in PC12 cells that were treated for 24 h with other neurotrophins and growth factors, such as brain-derived neurotrophic factor, neurotro-phin-3, epidermal growth factor, insulin-like growth factor-I, and basic fibroblast growth factor, only epidermal growth factor was found to increase GSH levels by 30%. Whereas NGF increased GSH levels in the human neuro-blastoma SK-N-SH-SY5Y and the human melanoma A-875 in serum-free medium, addition of fetal calf serum to the medium abolished the NGF effects on GSH levels in the NGF-responsive cell lines, SK-N-SH-SY5Y, A-875, and the CNS C6 rat glioma subclone 2BD.  相似文献   

15.
Modifications induced by dibutyryl cyclic AMP (diBcAMP) and hydrocortisone in the energy metabolism of chick astroblasts in culture have been investigated. DiBcAMP does not modify the levels of enolase, malate dehydrogenase (MDH), total lactate dehydrogenase (LDH) and glutamine synthetase (GS) activities in these cultured glial cells. However, these cells can be sensitized to the nucleotide analog by trypsinization before seeding. The phenomenon affects specifically GS activity and the synthesis, with an inhibitory effect, of the H subunit of LDH. Addition of hydrocortisone to the culture medium stimulates MDH and GS activities of the cells; trypsinization accentuates the stimulatory effect on GS. This hormone also modifies the synthesis of H and M subunits of LDH in a positive and negative way respectively. The phenomenon is increased by trypsin treatment. The present studies indicate clearly that hydrocortisone generates in cultured chick glial cells metabolic modifications qualitatively different from those obtained by diBcAMP. It is suggested that trypsin treatment, by altering some protein constituents of the cell surface, modifies the adhesiveness of different cell types present in the cell suspension after dissociation of the brain and thus leads to select, in culture, a specific astroglial subpopulation.  相似文献   

16.
Fetal and neonatal rat hepatocytes were cultured alone or in association with another liver epithelial cell type, in a medium with or without hydrocortisone. Secretion of albumin and alpha-fetoprotein decreased in pure hepatocyte culture, whereas in co-culture it remained stable for several days. Furthermore, addition of hydrocortisone to the co-culture medium induced a rapid increase in albumin production which was maintained at a high level. In contrast, alpha-fetoprotein production was inhibited. At the same time, an abundant extracellular material was secreted between and around hepatocyte colonies. The results demonstrate that the reciprocal relation between albumin and alpha-fetoprotein production which occurs during in vivo perinatal hepatocyte maturation is also observed in vitro. Both cell-cell contacts and glucocorticoids play a key role in this process. It appears that fetal and neonatal hepatocytes can maturate when maintained in a co-culture system.  相似文献   

17.
Some aspects of carbohydrate metabolism were investigated in three non-malignant, glycogen storing, cell lines derived from a primary culture of rat hepatocytes, and in the Morris hepatoma 3924 cells. The three cell lines show biochemical alterations which are, to a large extent, similar to those found in the hepatoma cells: increased activity of glycolytic enzymes and decreased activity of gluconeogenetic enzymes. An increase of glucose-6-phosphate dehydrogenase activity is also found. The three cell lines, as the Morris hepatoma cells, actively convert glucose into lactate under the in vitro conditions of culture. Fructose is not taken up as quickly as glucose and galactose is not metabolized. As compared with normal hepatocytes, the three cell lines have altered metabolism and growth behaviour. They largely resemble the preneoplastic cells appearing in rat liver at the early stages of experimental carcinogenesis.  相似文献   

18.
Superoxide release by zymosan-stimulated rat Kupffer cells in vitro   总被引:9,自引:0,他引:9  
Kupffer cells were isolated from pronase-perfused rat livers and were maintained as a monolayer culture in a state of high purity and viability. Immediately after contact with zymosan particles, O2 uptake of the Kupffer cells increased fivefold; about 50% of the net oxygen consumed was accounted for as superoxide released into the medium. Concomitantly, a transient burst of luminol-dependent chemiluminescence, an increased activity of NAD(P)H oxidase and a stimulation of the flow of glucose through the hexose monophosphate shunt were observed. Chemiluminescence and O2- production were almost completely inhibited by superoxide dismutase and iodoacetate. Zymosan-induced chemiluminescence was not inhibited in the presence of the non-penetrating thiol reagents, 5,5'-dithio-bis-2-nitrobenzoate and iodoacetyl-sepharose. Iodoacetate acted on the cytosolic glucose-6-phosphate dehydrogenase rather than on NAD(P)H oxidase of the cell membrane.  相似文献   

19.
The four-carbon phosphonate, 3,4-dihydroxybutyl-1-phosphonate, is similar to glycerol-3-phosphate in its ability to inhibit cell growth of Escherichia coli strain 8 cultured in low-phosphate synthetic medium supplemented with either succinate or casein hydrolysate as the sole carbon source. The three-carbon phosphonate, 2,3-dihydroxypropyl-1-phosphonate, does not appear to exhibit a similar effect. The inhibition caused by the four-carbon phosphonate differs from that caused by glycerol-3-phosphate in at least three ways. (i) Its inhibitory effect is not offset by the presence of glucose in the culture medium. (ii) It is capable of exerting its inhibitory effect on cells containing an active aerobic glycerol-3-phosphate dehydrogenase. (iii) Its inhibitory effect is maintained in synthetic medium containing high concentrations of inorganic phosphate. The four-carbon phosphonate appears to be bacteriostatic and inhibits the uptake of labeled glycerol-3-phosphate by E. coli strain 8.  相似文献   

20.
Differentiation of rabbit adipocyte precursor cells in a serum-free medium   总被引:1,自引:0,他引:1  
Summary A serum-free, hormone-supplemented medium containing insulin, transferrin, and triiodothyronine (ITT medium), able to support differentiation of rat adipose precursor cells, has been used to study the regulation of the development of adipocytes in the rabbit. Adipose conversion was assessed by the appearance of glycerol-3-phosphate dehydrogenase activity. Stromal-vascular cells from rabbit perirenal adipose tissue differentiated to a very low extent or not at all in ITT medium. Supplementation of ITT medium with growth hormone or fibroblast growth factor did not increase the proportion of differentiated cells. In contrast, rabbit stromal-vascular cells were able to differentiate in ITT medium supplemented with glucocorticoids (dexamethasone, corticosterone) whereas sex steroids (β-estradiol, testosterone, progesterone) did not affect the differentiation process. In the presence of both dexamethasone and insulin, 20 to 50% of rabbit stromal-vascular cells differentiated into adipocytes within 2 wk of culture. The stimulatory actions of dexamethasone or insulin were dose-dependent. Insulin-like growth Factor-I (IGF-I), did not replace insulin under our culture conditions and had only a slight effect when added along with dexamethasone (100 nM) and insulin (1.7 nM). The results suggest that glucocorticoids, in association with insulin, may play an important role in the development of adipocytes from rabbit precursor cells. This work was supported by grant 4388 from the Institut National de la Recherche Agronomique, France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号