共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Heck S Grau T Buchala A Métraux JP Nawrath C 《The Plant journal : for cell and molecular biology》2003,36(3):342-352
The salicylic acid (SA)-induction deficient (sid) mutants of Arabidopsis, eds5 and sid2 accumulate normal amounts of camalexin after inoculation with Pseudomonas syringae pv. tomato (Pst), while transgenic NahG plants expressing an SA hydroxylase that degrades SA have reduced levels of camalexin and exhibit a higher susceptibility to different pathogens compared to the sid mutants. SID2 encodes an isochorismate synthase necessary for the synthesis of SA. NahG was shown to act epistatically to the sid mutant phenotype regarding accumulation of camalexin after inoculation with Pst in eds5NahG and sid2NahG plants. The effect of the pad4 mutation on the sid mutant phenotype was furthermore tested in eds5pad4 and sid2pad4 double mutants, and it was demonstrated that PAD4 acts epistatically to EDS5 and SID2 regarding the production of camalexin after inoculation with Pst. NahG plants and pad4 mutants were also found to produce less ethylene (ET) after infection with Pst in comparison to the wild type (WT) and sid mutants. Both PAD4 and NahG acted epistatically to SID regarding the Pst-dependent production of ET that was found to be necessary for the accumulation of camalexin. Early production of jasmonic acid (JA) 12 h after inoculation with Pst/avrRpt2 was absent in all plants expressing NahG compared to the other mutants tested here. These genetic studies unravel pleiotropic changes in defence signalling of NahG plants that are unlikely to result from their low SA content. This adds unexpected difficulties in the interpretation of earlier findings based solely on NahG plants. 相似文献
3.
Chen Z Kloek AP Cuzick A Moeder W Tang D Innes RW Klessig DF McDowell JM Kunkel BN 《The Plant journal : for cell and molecular biology》2004,37(4):494-504
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae. 相似文献
4.
Brading PA Hammond-Kosack KE Parr A Jones JD 《The Plant journal : for cell and molecular biology》2000,23(3):305-318
Tomato leaves or cotyledons expressing the Cf-2 or Cf-9 Cladosporium fulvum resistance genes induce salicylic acid (SA) synthesis following infiltration with intercellular washing fluid (IF) containing the fungal peptide elicitors Avr2 and Avr9. We investigated whether SA was required for Cf gene-dependent resistance. Tomato plants expressing the bacterial gene nahG, encoding salicylate hydroxylase, did not accumulate SA in response to IF infiltration but remained fully resistant to C. fulvum. NahG Cf0 plants were as susceptible to C. fulvum as wild-type Cf0. Neither free nor conjugated salicylic acid accumulated in IF-infiltrated Cf2 and Cf9 NahG leaves and cotyledons but conjugated catechol did accumulate. The Cf-9-dependent necrotic response to IF was prevented in NahG plants and replaced by a chlorotic Cf-2-like response. SA also potentiated Cf-9-mediated necrosis in IF-infiltrated wild-type leaves. In contrast, the Cf-2-dependent IF response was retained in NahG leaves and chlorosis was more pronounced than in the wild-type. The distribution of cell death between different cell types was altered in both Cf2 and Cf9 NahG leaves after IF injection. IF-induced accumulation of three SA-inducible defence-related genes was delayed and reduced but not abolished in NahG Cf2 and Cf9 leaves and cotyledons. NahG Tm-22 tomato showed increased hypersensitive response (HR) lesion size upon TMV infection, as observed in TMV-inoculated N gene-containing NahG tobacco plants. 相似文献
5.
Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene 总被引:10,自引:0,他引:10
Leslie Friedrich Bernard Vernooij Tom Gaffney Alison Morse John Ryals 《Plant molecular biology》1995,29(5):959-968
Transgenic tobacco plants that express the bacterial nahG gene encoding salicylate hydroxylase have been shown to accumulate very little salicylic acid and to be defective in their ability to induce systemic acquired resistance (SAR). In recent experiments using transgenic NahG tobacco and Arabidopsis plants, we have also demonstrated that salicylic acid plays a central role in both disease susceptibility and genetic resistance. In this paper, we further characterize tobacco plants that express the salicylate hydroxylase enzyme. We show that tobacco mosaic virus (TMV) inoculation of NahG tobacco leaves induces the accumulation of the nahG mRNA in the pathogen infected leaves, presumably due to enhanced stabilization of the bacterial mRNA. SAR-associated genes are expressed in the TMV-infected leaves, but this is localized to the area surrounding necrotic lesions. Localized acquired resistance (LAR) is not induced in the TMV-inoculated NahG plants suggesting that LAR, like SAR, is dependent on SA accumulation. When SA is applied to nahG-expressing leave's SAR gene expression does not result. We have confirmed earlier reports that the salicylate hydroxylase enzyme has a narrow substrate specificity and we find that catechol, the breakdown product of salicylic acid, neither induces acquired resistance nor prevents the SA-dependent induction of the SAR genes. 相似文献
6.
Aviv DH Rustérucci C Holt BF Dietrich RA Parker JE Dangl JL 《The Plant journal : for cell and molecular biology》2002,29(3):381-391
LSD1 was defined as a negative regulator of plant cell death and basal disease resistance based on its null mutant phenotypes. We addressed the relationship between lsd1-mediated runaway cell death and signaling components required for systemic acquired resistance (SAR), namely salicylic acid (SA) accumulation and NIM1/NPR1. We present two important findings. First, SA accumulation and NIM1/NPR1 are required for lsd1-mediated runaway cell death following pathogen infection or application of chemicals that mimic SA action. This implies that lsd1-dependent cell death occurs 'downstream' of the accumulation of SA. As SA application triggers runaway cell death in lsd1 but not wild-type plants, we infer that LSD1 negatively regulates an SA-dependent signal leading to cell death. Thus SA is both a trigger and a required mediator of lsd1 runaway cell death. Second, neither SA accumulation nor NIM1/NPR1 function is required for the basal resistance operating in lsd1. Therefore LSD1 negatively regulates a basal defense pathway that can act upstream or independently of both NIM1/NPR1 function and SA accumulation following avirulent or virulent pathogen challenge. Our data, together with results from other studies, point to the existence of an SA-dependent 'signal potentiation loop' controlling HR. Continued escalation of signaling in the absence of LSD1 leads to runaway cell death. We propose that LSD1 is a key negative regulator of this signal potentiation. 相似文献
7.
Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity
The effects of salicylic acid (SA) on growth parameters and enzyme activities were investigated in salt-stressed safflower (Carthamus tinctorius L.). Twenty-five days after sowing, seedlings were treated with NaCl (0, 100, and 200?mM) and SA (1?mM), and were harvested at 21 days after treatments. Results showed that some growth parameters decreased under salinity, while malondialdehyde (MDA) and hydrogen peroxide (H2O2) content, phenolic compounds, and some enzyme activities increased. SA application increased some growth parameters, MDA and H2O2 content, and enzyme activities except catalase (CAT), which was different from the other enzymes and SA significantly reduced CAT activity in plants. These results suggest that SA-induced tolerance to salinity may be related to regulation of antioxidative responses and H2O2 level. Our study suggested that the resistant safflower can direct reactive oxygen species from a threat to an opportunity by using SA. Therefore, exogenous application of SA played this role through regulation of the antioxidant system. 相似文献
8.
Gah-Hyun Lim 《The Plant Pathology Journal》2023,39(1):21
In plants, salicylic acid (SA) is a central immune signal that is involved in both local and systemic acquired resistance (SAR). In addition to SA, several other chemical signals are also involved in SAR and these include N-hydroxy-pipecolic acid (NHP), a newly discovered plant metabolite that plays a crucial role in SAR. Recent discoveries have led to a better understanding of the biosynthesis of SA and NHP and their signaling during plant defense responses. Here, I review the recent progress in role of SA and NHP in SAR. In addition, I discuss how these signals cooperate with other SAR-inducing chemicals to regulate SAR. 相似文献
9.
Yun BW Atkinson HA Gaborit C Greenland A Read ND Pallas JA Loake GJ 《The Plant journal : for cell and molecular biology》2003,34(6):768-777
Plant immunity against the majority of the microbial pathogens is conveyed by a phenomenon known as non-host resistance (NHR). This defence mechanism affords durable protection to plant species against given species of phytopathogens. We investigated the genetic basis of NHR in Arabidopsis against the wheat powdery mildew fungus Blumeria graminis f. sp. tritici (Bgt). Both primary and appressorial germ tubes were produced from individual Bgt conidia on the surface of the Arabidopsis leaves. Attempted infection occasionally resulted in successful penetration, which led to the development of an abnormal unilateral haustorium. Inoculation of a series of Arabidopsis defence-related mutants with Bgt resulted in the attenuation of reactive oxygen intermediate (ROI) production and salicylic acid (SA)-dependent defence gene expression in eds1, pad4 and nahG plants, which are known to be defective in some aspects of host resistance. Furthermore, Bgt often developed bilateral haustoria in the mutant Arabidopsis lines that closely resembled those formed in wheat. A similar decrease in NHR was observed following treatment of the wild-type Arabidopsis plants with cytochalasin E, an inhibitor of actin microfilament polymerisation. In eds1 mutants, inhibition of actin polymerisation severely compromised NHR in Arabidopsis against Bgt. This permitted completion of the Bgt infection cycle on these plants. Therefore, actin cytoskeletal function and EDS1 activity, in combination, are major contributors to NHR in Arabidopsis against wheat powdery mildew. 相似文献
10.
Mohammed A. Al-Saleh Amgad A. Saleh 《Archives Of Phytopathology And Plant Protection》2013,46(17-20):863-872
The individual and combined effects of Pseudomonas fluorescens (Pf) and salicylic acid (SA) were investigated for control of citrus bacterial canker (CBC). Both treated plants with copper hydroxide and untreated ones were used as controls. Mexican lime (Citrus aurantifolia) seedlings were treated with SA at 10 mM, Pf and distilled water. Plants were initially inoculated with Xanthomonas citri subsp citri 72 h post treatments. Results indicated that the Pf and SA treatment controlled CBC more effectively compared to separately applying Pf or SA. The application of Pf in combination with SA significantly reduced lesion number per leaf (72%) and disease severity (84%). Significant changes in the activities of peroxidase and catalase were found. In conclusion, the integration of Pf with SA complements each other and can be applied to manage citrus canker disease in conjunction with other control programmes. 相似文献
11.
为了探索低温胁迫下,水杨酸(salicylic acid,SA)提高牡丹叶片耐冷性的生理机制,以8年生牡丹品种‘胡红’20 d叶龄的叶片为试材,将其浸入0、0.5、1.0、1.5、2.0 mmol·L-1的SA水溶液,置于4℃光照培养箱进行暗培养,经0、4、8、12 h的低温处理后取样测定其活性氧水平和保护酶活性,MDA、可溶性糖和可溶性蛋白含量及细胞膜透性。结果表明:施用低于2.0 mmol·L-1的SA可减轻低温对牡丹叶片的伤害程度,降低O-2·、H2O2和MDA含量以及细胞膜透性,但能使可溶性糖、可溶性蛋白含量升高,POD、SOD和CAT活性增加。其中1.0 mmol·L-1的SA能显著降低叶片组织中O-2·和MDA的含量,明显降低低温引起的叶片水渍化程度,随着低温处理时间的增加,这种效果更加明显。施用2.0 mmol·L-1的SA并不能明显减轻低温引起的叶片水渍化程度,当低温处理12 h后,叶片受到的低温伤害程度和没有施用SA时没有明显区别。总之,SA是否能明显提高牡丹叶片的耐冷性与其浓度有关,1.0 mmol·L-1的SA最能提高牡丹叶片的抗寒性,过低和过高浓度的SA则不能明显增加叶片的抗寒性。该研究成果能快速应用于牡丹的提早生产,并为增强其它作物的抗寒性提供理论参考。 相似文献
12.
微生物诱导的植物系统抗性 总被引:2,自引:0,他引:2
综述了由植物病原菌和非病原性的根际促生菌诱导产生的两种植物系统抗性:系统获得性抗性(SAR)和系统诱导抗性(ISR),比较了两类系统抗性的诱导、信号分子和机理的异同点,阐述了信号分子水杨酸在系统获得性抗性诱导过程中的作用及茉莉酸和乙烯在系统诱导抗性产生过程中的作用。 相似文献
13.
Zimmerli L Stein M Lipka V Schulze-Lefert P Somerville S 《The Plant journal : for cell and molecular biology》2004,40(5):633-646
Arabidopsis does not support the growth and asexual reproduction of the barley pathogen, Blumeria graminis f. sp. hordei Bgh). A majority of germlings fail to penetrate the epidermal cell wall and papillae. To gain additional insight into this interaction, we determined whether the salicylic acid (SA) or jasmonate (JA)/ethylene (ET) defence pathways played a role in blocking barley powdery mildew infections. Only the eds1 mutant and NahG transgenics supported a modest increase in penetration success by the barley powdery mildew. We also compared the global gene expression patterns of Arabidopsis inoculated with the non-host barley powdery mildew to those inoculated with a virulent, host powdery mildew, Erysiphe cichoracearum. Genes repressed by inoculations with non-host and host powdery mildews relative to non-inoculated control plants accounted for two-thirds of the differentially expressed genes. A majority of these genes encoded components of photosynthesis and general metabolism. Consistent with this observation, Arabidopsis growth was inhibited following inoculation with Bgh, suggesting a shift in resource allocation from growth to defence. A number of defence-associated genes were induced during both interactions. These genes likely are components of basal defence responses, which do not effectively block host powdery mildew infections. In addition, genes encoding defensins, anti-microbial peptides whose expression is under the control of the JA/ET signalling pathway, were induced exclusively by non-host pathogens. Ectopic activation of JA/ET signalling protected Arabidopsis against two biotrophic host pathogens. Taken together, these data suggest that biotrophic host pathogens must either suppress or fail to elicit the JA/ET signal transduction pathway. 相似文献
14.
DONGWON BAEK PRASANTH PATHANGE JUNG‐SUNG CHUNG JIAFU JIANG LIQIONG GAO AKIRA OIKAWA MASAMI YOKOTA HIRAI KAZUKI SAITO PAUL W. PARE HUAZHONG SHI 《Plant, cell & environment》2010,33(8):1383-1392
Sulphonation of small molecules by cytosolic sulphotransferases in mammals is an important process in which endogenous molecules are modified for inactivation/activation of their biological effects. Plants possess large numbers of sulphotransferase genes, but their biological functions are largely unknown. Here, we present a functional analysis of the Arabidopsis sulphotransferase AtSOT12 (At2g03760). AtSOT12 gene expression is strongly induced by salt, and osmotic stress and hormone treatments. The T‐DNA knock‐out mutant sot12 exhibited hypersensitivity to NaCl and ABA in seed germination, and to salicylic acid (SA) in seedling growth. In vitro enzyme activity assay revealed that AtSOT12 sulphonates SA, and endogenous SA levels suggested that sulphonation of SA positively regulates SA production. Upon challenging with the pathogen Pseudomonas syringae, sot12 mutant and AtSOT12 over‐expressing lines accumulate less and more SA, respectively, when compared with wild type. Consistent with the changes in SA levels, the sot12 mutant was more susceptible, while AtSOT12 over‐expressing plants are more resistant to pathogen infection. Moreover, pathogen‐induced PR gene expression in systemic leaves was significantly enhanced in AtSOT12 over‐expressing plants. The role of sulphonation of SA in SA production, mobile signalling and acquired systemic resistance is discussed. 相似文献
15.
16.
17.
A new flavoprotein enzyme, l-glutamate oxidase, was purified to homogeneity from an aqueous extract of a wheat bran culture of Streptomyces sp. X-l 19–6. It showed absorption maxima at 273, 385 and 465 nm and a shoulder around 490 nm, and contained 2 mol of FAD per mol of enzyme. The enzyme had a molecular weight of approximately 140,000 and consisted of three sizes of subunits with molecular weights of 44,000, 16,000 and 9,000. Balance studies showed that 1 mol of l-glutamate was converted to 1 mol of α-ketoglutarate, ammonia and hydrogen peroxide with the consumption of 1 mol of oxygen. In addition to l-glutamate, l-aspartate was oxidized by the enzyme but only to an extent of 0.6% at pH 7.4; the Michaelis constants were as follows: 0.21 mM for l-glutamate and 29 mM for l-aspartate. The isoelectric point was pH 6.2, and the enzyme activity was optimal between pH 7.0 and 8.0. When the enzyme was heated at pH 5.5 for 15 min, the remaining activity was 100% of the original activity level at 65°C, 87% at 75°C and 47% at 85°C. 相似文献
18.
19.
《Bioscience, biotechnology, and biochemistry》2013,77(12):2301-2306
A 3,6-di-O-benzylated demethylallosamizoline derivative was glycosylated at the 4-position with an N, N′-diphthaloylchitobiosyl moiety by using the thioglycoside method. After de-protections, the resulting demethylallosamidin-like pseudotrisaccharide was evaluated as an inhibitor against a couple of chitinases. 相似文献
20.
Miyuki Kusajima Yasuko Okumura Moeka Fujita 《Bioscience, biotechnology, and biochemistry》2017,81(9):1850-1853
Among the regulatory mechanisms of systemic acquired resistance (SAR) in tomato, antagonistic interaction between salicylic acid (SA) and abscisic acid (ABA) signaling pathways was investigated. Treatment with 1,2-benzisothiazol-3(2H)-one1,1-dioxide (BIT) induced SAR in tomato thorough SA biosynthesis. Pretreatment of ABA suppressed BIT-induced SAR including SA accumulation, suggesting that ABA suppressed SAR by inhibiting SA biosynthesis. 相似文献