首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Enteropeptidase [EC 3.4.21.9] is a membrane-bound serine endopeptidase present in the duodenum that converts trypsinogen to trypsin. We previously cloned the cDNA of the porcine enzyme and deduced its entire amino acid sequence [M. Matsushima et al. (1994) J. Biol. Chem. 269, 19976-19982]. In the present study, we purified the porcine enzyme approximately 2,200-fold in a 12% yield from a duodenal mucosal extract to apparent homogeneity by an improved procedure comprising four steps of chromatography including benzamidine-Sepharose affinity chromatography. Lectin blotting analysis suggested that the enzyme is glycosylated mainly with N-linked carbohydrate chains of the tri- and/or tetraantennary complex type. The H and L chains of the enzyme were separated into two major bands upon SDS-PAGE under reducing conditions, suggesting that the enzyme mainly comprises two isoforms, a higher molecular weight form and a lower molecular weight form. The enzyme was also separated by lectin affinity chromatography into two major fractions, named isoforms I and II, which corresponded to the higher and lower molecular weight forms, respectively. These two isoforms appeared to be different only in the carbohydrate moiety, having essentially the same enzymatic properties. The enzyme was optimally active at pH 8.0 toward Gly-Asp-Asp-Asp-Asp-Lys-beta-naphthylamide, and was inhibited strongly by various serine proteinase inhibitors. Furthermore, it was also strongly inhibited by E-64 [L-trans-epoxysuccinyl-leucylamide-(4-guanido)-butane], a cysteine proteinase inhibitor. Substrate specificity studies involving various synthetic peptides indicated that acidic residues at the P2, P3, and/or P4 positions are especially favorable for maximal activity, but are not absolutely necessary, at least in the cases of peptide substrates.  相似文献   

3.
1. A proteinase has been isolated from the ovarian fluid of the lumpsucker (Cyclopterus lumpus). 2. The enzyme was purified essentially to homogeneity by a one step purification procedure using anion-exchange chromatography. 3. The mol. wt of the denatured enzyme is approximately 20,000 as judged by SDS-polyacrylamide gel electrophoresis. 4. The enzyme is inhibited by serine-proteinase inhibitors and acts in the manner of a trypsin-type proteinase both with respect to specific peptide substrates and enzyme inhibitors. 5. The lumpsucker proteinase exhibits low general proteolytic activity but acts effectively on the specific chromogenic peptide substrates.  相似文献   

4.
A new trypsin-like proteinase was purified to homogeneity from the posterior midgut of Tenebrio molitor larvae by ion-exchange chromatography on DEAE-Sephadex A-50 and gel filtration on Superdex-75. The isolated enzyme had molecular mass of 25.5 kD and pI 7.4. The enzyme was also characterized by temperature optimum at 55 degrees C, pH optimum at 8.5, and K(m) value of 0.04 mM (for hydrolysis of Bz-Arg-pNA). According to inhibitor analysis the enzyme is a trypsin-like serine proteinase stable within the pH range of 5.0-9.5. The enzyme hydrolyzes peptide bonds formed by Arg or Lys residues in the P1 position with a preference for relatively long peptide substrates. The N-terminal amino acid sequence, IVGGSSISISSVPXQIXLQY, shares 50-72% identity with other insect trypsin-like proteinases, and 44-50% identity to mammalian trypsins. The isolated enzyme is sensitive to inhibition by plant proteinase inhibitors and it can serve as a suitable target for control of digestion in this stored product pest.  相似文献   

5.
Proteinase I, an enzyme previously shown to be able to degrade contractile and cytoskeletal elements of white-croaker (Micropogon opercularis) myofibrils, was purified to apparent homogeneity by chromatography on DEAE-Sephacel, octyl-Sepharose CL 4B and arginine-Sepharose 4B. Its Mr was determined to be 269,000 by Sephacryl S-300 gel filtration. Under denaturing conditions, the enzyme dissociated into two subunits with Mr 20,000 and 15,500, in a molar ratio of 1.8:1. Proteinase I showed a pH optimum of 8.5. The enzyme was strongly inhibited by several serine proteinase inhibitors, whereas inhibitors of the other types of proteinases did not affect, or only scarcely affected, its activity. Several N-terminal-blocked 4-methyl-7-coumarylamide substrates having either arginine or lysine residues adjacent to the fluorogenic group were efficiently hydrolysed by the enzyme. These results indicate that proteinase I is a trypsin-like serine proteinase. The enzyme appears to be distinct from other proteinases previously described in skeletal muscle, and might be involved in the catabolism of myofibrillar proteins.  相似文献   

6.
《Insect Biochemistry》1990,20(7):709-718
A proteinase was purified from crayfish haemocytes by affinity chromatography on heparin-sepharose and phenyl-sepharose, followed by DEAE-cellulose ion-exchange chromatography. This proteinase could mediate the conversion of prophenoloxidase (proPO) to its active form, phenoloxidase (PO), and its was therefore designated a prophenoloxidase activating enzyme, ppA.The purified ppA had a molecular mass of about 36,000 Da. Since ppA was a proteinase able to cleave chromogenic peptide substrates of trypsin, and serine proteinase inhibitors were strongly inhibitory towards ppA activity, the enzyme appeared to be a serine type proteinase. It exhibited maximal enzyme activity at neutral and slightly alkaline pH, and was sensitive to heat inactivation at 58°C.  相似文献   

7.
An alkaline proteinase, previously identified in rat liver and heart, has been purified from the soluble fraction of human erythrocytes. The proteinase has an apparent molecular weight of 600 000 and is composed of eight subunits with molecular weights ranging from 32 000 to 21 000. The proteinase degrades both protein and synthetic peptide substrates with a broad pH optimum of 7.5-11.0. Among the synthetic peptides tested, tripeptides with arginine at the P1 position (e.g. Z-Val-Leu-Arg-4-methoxy-2-napthylamine and Boc-Leu-Gly-Arg-4-methylcoumarin-7-amide) are particularly good substrates. The proteinase appears to be sulfhydryl-dependent and is inhibited completely by mersalyl acid and by hemin; inhibitors of serine and metallo-type proteinases have no effect on proteinase activity. Interestingly, a variety of other proteinase inhibitors such as leupeptin, chymostatin and N-ethylmaleimide failed to completely inhibit protein-hydrolyzing activities of the enzyme. These results indicate that these activities may be accounted for by at least two different catalytic sites. Proteinase activity is stable in the presence of 1 M urea, 0.5% Triton X-100 or 0.03% SDS and is not affected by ATP. Based on the high molecular weight and sulfhydryl-dependence, we have named this proteinase macropain.  相似文献   

8.
The intact, 100 kd microsomal enzyme and the 53 kd catalytic fragment of rat HMG-CoA reductase are both phosphorylated and inactivated by the AMP-activated protein kinase. Using the catalytic fragment, we have purified and sequenced peptides containing the single site of phosphorylation. Comparison with the amino acid sequence predicted from the cDNAs encoding other mammalian HMG-CoA reductases identifies this site as a serine residue close to the C-terminus (Ser872 in the human enzyme). Phosphopeptide mapping of native, 100 kd microsomal HMG-CoA reductase confirms that this C-terminal serine is the only major site phosphorylated in the intact enzyme by the AMP-activated protein kinase. The catalytic fragment of HMG-CoA reductase was also isolated from rat liver in the presence of protein phosphatase inhibitors under conditions where the enzyme is largely in the inactive form. HPLC, mass spectrometry and sequencing of the peptide containing Ser872 demonstrated that this site is highly phosphorylated in intact liver under these conditions. We have also identified by amino acid sequencing the N-terminus of the catalytic fragment, which corresponds to residue 423 of the human enzyme.  相似文献   

9.
We have investigated a proteinase inhibitor, designed according to the preferred amino acid sequence that is cleaved by the murine T-cell specific serine proteinase 1 (TSP-1) for its effect on the cytolytic potential of cloned cytotoxic T-cell lines (CTLL) and of cytoplasmic granules, derived from these cells. Pretreatment of effector cells with H-D-Pro-Phe-Arg-chloromethyl-ketone (PFR-CK) prior to the cytotoxicity assay did not result in inhibition of cytolytic activity of three independent CTLL and did not effect their granule-associated TSP-1 activity after extraction with Triton X-100. Furthermore, PFR-CK did not interfere with cytolysis of target cells by CTLL when present for the entire incubation period. In contrast, PFR-CK inhibited in a dose-dependent manner both TSP-1 activity and the hemolytic/cytolytic potential of isolated cytoplasmic granules after their pretreatment with high-salt concentration. We interpret these results to mean that cytolysis of target cells by CTLL involves the granule-associated proteinase TSP-1, which probably becomes active upon exocytosis following effector-target cell interactions.  相似文献   

10.
The anticarcinogenic Bowman-Birk proteinase inhibitor (BBI) inhibits a 70-kDa serine proteinase in C3H/10T1/2 transformed fibroblasts. Two serine proteinases, the proline endopeptidase and a novel neutral proteolytic activity, both having a mass of approximately 70-kDa, were isolated from the cytoplasm of C3H/10T1/2 cells. BBI did not inhibit diisopropylfluorophosphate binding to the proline endopeptidase or its ability to hydrolyze peptides. However, BBI blocked the binding of diisopropylfluorophosphate and inhibited the cleavage of peptides by the novel cytoplasmic enzyme. Thus BBI does not inhibit the proline endopeptidase but another soluble 70-kDa serine proteinase from C3H/10T1/2 cells.  相似文献   

11.
In order to find a unique proteinase, proteinase-producing bacteria were screened from fish sauce in Thailand. An isolated moderately halophilic bacterium was classified and named Filobacillus sp. RF2-5. The molecular weight of the purified enzyme was estimated to be 49 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10-11 under 10% NaCl, and was highly stable in the presence of about 25% NaCl. The activity was strongly inhibited by phenylmethane sulfonyl fluoride (PMSF), chymostatin, and alpha-microbial alkaline proteinase inhibitor (MAPI). Proteinase activity was activated about 2-fold and 2.5-fold by the addition of 5% and 15-25% NaCl respectively using Suc-Ala-Ala-Phe-pNA as a substrate. The N-terminal 15 amino acid sequence of the purified enzyme showed about 67% identity to that of serine proteinase from Bacillus subtilis 168 and Bacillus subtilis (natto). The proteinase was found to prefer Phe, Met, and Thr at the P1 position, and Ile at the P2 position of peptide substrates, respectively. This is the first serine proteinase with a moderately thermophilic, NaCl-stable, and NaCl-activatable, and that has a unique substrate specificity at the P2 position of substrates from moderately halophilic bacteria, Filobacillus sp.  相似文献   

12.
The relatively little-investigated entomopathogen Conidiobolus coronatus secretes several proteinases into culture broth. Using a combination of ion-exchange and size-exclusion chromatography, we purified to homogeneity a serine proteinase of Mr 30,000-32,000, as ascertained by SDS-PAGE. The purified enzyme showed subtilisin-like activity. It very effectively hydrolyzed N-Suc-Ala(2)-Pro-Phe-pNa with a Km-1.36 x 10(-4) M and Kcat-24 s(-1), and N-Suc-Ala(2)-Pro-Leu-pNa with Km-6.65 x 10(-4) M and Kcat-11 s(-1). The specificity index k(cat)/K(m) for the tested substrates was calculated to be 176,340 s(-1) M(-1) and 17,030 s(-1) M(-1), respectively. Using oxidized insulin B chain as a substrate, the purified proteinase exhibited specificity to aromatic and hydrophobic amino-acid residues, such as Phe, Leu, and Gly at the P1 position, splitting primarily the peptide bonds: Phe(1)-Val(2), Leu(15)-Tyr(16), and Gly(23)-Phe(24). The proteinase appeared to be sensitive to the specific synthetic inhibitors of the serine proteinases DFP (diisopropyl flourophosphate) and PMSF (phenyl-methylsulfonyl fluoride) as well as to some naturally occurring protein inhibitors of chymotrypsin. It is worth noting that the enzyme exhibited the highest sensitivity to inhibition by AMCI-1 (with an association constant of 3 x 10(10) M(-1)), an inhibitor of cathepsin G/chymotrypsin from the larval hemolymph of Apis mellifera, reinforcing the possibility of involvement of inhibitors from hemolymph in insect innate immunity. The substrate specificity and proteinase inhibitor effects indicate that the purified proteinase from the fermentation broth of Conidiobolus coronatus is a subtilisin-like serine proteinase.  相似文献   

13.
A new serine proteinase was isolated from Cucurbita ficifolia seeds by the purification procedure, which includes: extraction, salting out with ammonium sulphate, chromatography on CM-cellulose. Sephacryl S-300 gel filtration and h.p.l.c. on DEAE-2SW TSK column. The enzyme was homogeneous both in native and SDS PAGE. Three independent methods showed its molecular mass to be approximately 77 kDa. The enzyme was inhibited by specific serine proteinase organic inhibitors, and was active in the presence of inhibitors specific for other proteinase classes. Surprisingly, squash proteinase exhibited a very high and broad pH optimum with a maximum at 10.7. It hydrolysed many different peptide bonds in B-chain of insulin and was able to cleave four bonds in endogenous serine proteinase inhibitor (CMTI).  相似文献   

14.
J D Young  L G Leong  C C Liu  A Damiano  D A Wall  Z A Cohn 《Cell》1986,47(2):183-194
Cytotoxic T lymphocytes and lymphocytes with NK-like activity contain a serine esterase activity which has been localized to their cytoplasmic granules by cytochemistry and subcellular fractionation studies. The serine esterase-specific inhibitor 3H-DFP labels two protein species in the granules. The two proteins, referred to as serine esterases 1 and 2 (SE 1 and SE 2), migrate with Mr of 34-36 kd and 28-30 kd, respectively, under reducing conditions. SE 1 shows trypsin-like activity and has been purified to apparent homogeneity. Under nonreducing conditions, SE 1 has an Mr of 60-66 kd, suggesting that it may consist of two disulfide-linked subunits of 34-36 kd each. SE 1 cleaves fibrin and casein, has a pl greater than 10, and optimal activity at pH 8. The substrate specificity of SE 2 is not known. The serine esterase activity is secreted by lymphocytes that have been stimulated with the calcium ionophore A23187. The serine esterases described here could play an active role in cell-mediated killing.  相似文献   

15.
Various amino acid and peptide thioesters were tested as substrates for human proteinase 3 and the best substrate is Boc-Ala-Ala-Nva-SBzl with a kcat/Km value of 1.0 x 10(6) M-1.s-1. Boc-Ala-Ala-AA-SBzl (AA = Val, Ala, or Met) are also good substrates with kcat/Km values of (1-4) x 10(5) M-1.s-1. Substituted isocoumarins are potent inhibitors of proteinase 3 and the best inhibitors are 7-amino-4-chloro-3-(2-bromoethoxy)isocoumarin and 3,4-dichloroisocoumarin (DCI) with kobs/[I] values of 4700 and 2600 M-1.s-1, respectively. Substituted isocoumarins, peptide phosphonates and chloromethyl ketones inhibited proteinase 3 less potently than human neutrophil elastase (HNE) by 1-2 orders of magnitude.  相似文献   

16.
A new subtilisin-like proteinase hydrolyzing chromogenic peptide substrate Glp-Ala-Ala-Leu-p-nitroanilide optimally at pH 8.1 was found in common plantain leaves. The protease named plantagolisin was isolated by ammonium sulfate precipitation of the leaves' extract followed by affinity chromatography on bacitracin-Sepharose and ion-exchange chromatography on Mono Q in FPLC regime. Its molecular mass is 19000 Da and pI 5.0. pH-stability range is 7-10 in the presence of 2 mM Ca(2+), temperature optimum is 40 degrees C. The substrate specificity of subtilase towards synthetic peptides and insulin B-chain is comparable with that of two other subtilisin-like serine proteinases: proteinase from leaves of the sunflower and taraxalisin. Besides, the proteinase is able to hydrolyze substrates with Pro in P(1) position. The enzyme hydrolyzes collagen. alpha and beta chains are hydrolyzed simultaneously in parallel; there are only low-molecular-mass hydrolysis products in the sample after 2 h of incubation. Pure serine proteinase was inactivated by specific serine proteinases inhibitors: diisopropylfluorophosphate, phenylmethylsulfonyl fluoride and Hg(2+). The plantagolisin N-terminal sequence ESNSEQETQTESGPGTAFL-, traced for 19 residues, revealed 37% homology with that of subtilisin from yeast Schizosaccharomyces pombe.  相似文献   

17.
A novel membrane-bound serine esterase, named tryptase TL2, which is immunologically reactive with the antibody inhibiting induction of syncytia by human immunodeficiency virus-1 (HIV-1) (Hattori, T., Koito, A., Takatsuki, K., Kido, H., and Kutunuma, N. (1989) FEBS Lett., 248, 48-52), has been purified from a human T4+ lymphocyte clone. The enzyme has a molecular mass of 198 +/- 15 kDa, as judged by gel-permeation liquid chromatography, and is composed of two subunits of 32 kDa and four subunits of 28 kDa, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Studies with model peptide substrates showed that the enzyme preferentially recognized L-arginine and cleaved Boc-Gln-Gly-Arg-4-methyl-coumaryl-7-amide and Boc-Gln-Ala-Arg-4-methyl-coumaryl-7-amide with high efficiency at a pH optimum of 8.5. The enzyme was strongly inhibited by the envelope glycoprotein gp 120 of HIV-1, by synthetic peptides with the sequence GPGR in their center, which corresponds to the principal neutralizing epitope of the gp 120s of various HIV-1 strains, by Kunitz-type inhibitors with the sequence GPCR in their active site, such as trypstatin, HI30, and [Arg15, Glu52]aprotinin and by the microbial inhibitors leupeptin and antipain. Studies on the subcellular distribution of tryptase TL2, immunohistochemical analysis, and cell surface radioiodination indicated that the enzyme is mainly localized in the plasma membrane.  相似文献   

18.
Human neutrophil elastase (HNE) has long been linked to the pathology of a variety of inflammatory diseases and therefore is a potential target for therapeutic intervention. At least two other serine proteases, proteinase 3 (Pr3) and cathepsin G, are stored within the same neutrophil primary granules as HNE and are released from the cell at the same time at inflammatory sites. HNE and Pr3 are structurally and functionally very similar, and no substrate is currently available that is preferentially cleaved by Pr3 rather than HNE. Discrimination between these two proteases is the first step in elucidating their relative contributions to the development and spread of inflammatory diseases. Therefore, we have prepared new fluorescent peptidyl substrates derived from natural target proteins of the serpin family. This was done because serpins are rapidly cleaved within their reactive site loop whether they act as protease substrates or inhibitors. The hydrolysis of peptide substrates reflects the specificity of the parent serpin including those from alpha-1-protease inhibitor and monocyte neutrophil elastase inhibitor, two potent inhibitors of elastase and Pr3. More specific substrates for these proteases were derived from the reactive site loop of plasminogen activator inhibitor 1, proteinase inhibitors 6 and 9, and from the related viral cytokine response modifier A (CrmA). This improved specificity was obtained by using a cysteinyl residue at P1 for Pr3 and an Ile residue for HNE and because of occupation of protease S' subsites. These substrates enabled us to quantify nanomolar concentrations of HNE and Pr3 that were free in solution or bound at the neutrophil surface. As membrane-bound proteases resist inhibition by endogenous inhibitors, measuring their activity at the surface of neutrophils may be a great help in understanding their role during inflammation.  相似文献   

19.
The cysteine proteinase EhCP112 and the adhesin EhADH112 assemble to form the EhCPADH complex involved in Entamoeba histolytica virulence. To further characterize this cysteine proteinase, the recombinant full-length EhCP112 enzyme was expressed and purified under denaturing conditions. After a refolding step under reductive conditions, the inactive precursor (ppEhCP112) was processed to a 35.5 kDa mature and active enzyme (EhCP112). The thiol specific inhibitor E-64, but not serine or aspartic proteinase inhibitors arrested this activation process. The activation step of the proenzyme followed by the mature enzyme suggests an autocatalytic process during EhCP112 maturation. The experimentally determined processing sites observed during EhCP112 activation lie close to processing sites of other cysteine proteinases from parasites. The kinetic parameters of the mature EhCP112 were determined using hemoglobin and azocasein as substrates. The proteinase activity of EhCP112 was completely inhibited by thiol inhibitors, E-64, TLCK, and chymostatin, but not by general proteinase inhibitors. Since EhCP112 is a proteinase involved in the virulence of E. histolytica, a reliable source of active EhCP112 is a key step for its biochemical characterization and to carry out future protein structure-function studies.  相似文献   

20.
Digestion in the larger black flour beetle, Cynaeus angustus (LeConte), was studied to identify new control methods for this pest of stored grains and grain products. The physiological pH of the larval gut, as measured with extracts in water, was approximately 6.1, and the pH for optimal hydrolysis of casein by gut extracts was 6.2 when buffers were reducing. However, under non-reducing conditions, hydrolysis of casein and synthetic serine proteinase substrates was optimal in alkaline buffer. Three major proteinase activities were observed in zymograms using casein or gelatin. Caseinolytic activity of C. angustus gut extracts was inhibited by inhibitors that target aspartic and serine proteinase classes, with minor inhibition by a cysteine proteinase inhibitor. In particular, soybean trypsin and trypsin/chymotrypsin inhibitors were most effective in reducing the in vitro caseinolytic activity of gut extracts. Based on these data, further studies are suggested on the effects of dietary soybean inhibitors of serine proteinases, singly and in combination with aspartic and cysteine proteinase inhibitors, on C. angustus larvae. Results from these studies can be used to develop new control strategies to prevent damage to grains and stored products by C. angustus and similar coleopteran pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号