首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reviews the geomicrobiological role of sulphate-reducing bacteria (SRB) in environments contaminated with petroleum products and describes the habitats of SRB and their capacity for bioremediation in anaerobic conditions. Moreover, the participation of SRB in biocorrosion and formation of different minerals and sediments is discussed.  相似文献   

2.
Swine manure contains diverse groups of aerobic and anaerobic bacteria. An anaerobic bacterial consortium containing sulfate-reducing bacteria (SRB) and acetate-utilizing methanogenic bacteria was isolated from swine manure. This consortium used phenol as its sole source of carbon and converted it to methane and CO2. The sulfate-reducing bacterial members of the consortium are the incomplete oxidizers, unable to carry out the terminal oxidation of organic substrates, leaving acetic acid as the end product. The methanogenic bacteria of the consortium converted the acetic acid to methane. When a methanogen inhibitor was used in the culture medium, phenol was converted to acetic acid by the SRB, but the acetic acid did not undergo further metabolism. On the other hand, when the growth of SRB in the consortium was suppressed with a specific SRB inhibitor, namely, molybdenum tetroxide, the phenol was not degraded. Thus, the metabolic activities of both the sulfate-reducing bacteria and the methanogenic bacteria were essential for complete degradation of phenol. Received: 31 January 1997 / Accepted: 7 March 1997  相似文献   

3.
Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.  相似文献   

4.
Microbiologically influenced corrosion is a problem commonly encountered in facilities in the oil and gas industries. The present study describes bacterial enumeration and identification in diesel and naphtha pipelines located in the northwest and southwest region in India, using traditional cultivation technique and 16S rDNA gene sequencing. Phylogenetic analysis of 16S rRNA sequences of the isolates was carried out, and the samples obtained from the diesel and naphtha-transporting pipelines showed the occurrence of 11 bacterial species namely Serratia marcescens ACE2, Bacillus subtilis AR12, Bacillus cereus ACE4, Pseudomonas aeruginosa AI1, Klebsiella oxytoca ACP, Pseudomonas stutzeri AP2, Bacillus litoralis AN1, Bacillus sp., Bacillus pumilus AR2, Bacillus carboniphilus AR3, and Bacillus megaterium AR4. Sulfate-reducing bacteria were not detected in samples from both pipelines. The dominant bacterial species identified in the petroleum pipeline samples were B. cereus and S. marcescens in the diesel and naphtha pipelines, respectively. Therefore, several types of bacteria may be involved in biocorrosion arising from natural biofilms that develop in industrial facilities. In addition, localized (pitting) corrosion of the pipeline steel in the presence of the consortia was observed by scanning electron microscopy analysis. The potential role of each species in biofilm formation and steel corrosion is discussed.  相似文献   

5.
Microbial colonization of petroleum industry systems takes place through the formation of biofilms, and can result in biodeterioration of the metal surfaces. In a previous study, two oil reservoir Bacillus strains (Bacillus licheniformis T6-5 and Bacillus firmus H2O-1) were shown to produce antimicrobial substances (AMS) active against different Bacillus strains and a consortium of sulfate-reducing bacteria (SRB) on solid medium. However, neither their ability to form biofilms nor the effect of the AMS on biofilm formation was adequately addressed. Therefore, here, we report that three Bacillus strains (Bacillus pumilus LF4—used as an indicator strain, B. licheniformis T6-5, and B. firmus H2O-1), and an oil reservoir SRB consortium (T6lab) were grown as biofilms on glass surfaces. The AMS produced by strains T6-5 and H2O-1 prevented the formation of B. pumilus LF4 biofilm and also eliminated pre-established LF4 biofilm. In addition, the presence of AMS produced by H2O-1 reduced the viability and attachment of the SRB consortium biofilm by an order of magnitude. Our results suggest that the AMS produced by Bacillus strains T6-5 and H2O-1 may have a potential for pipeline-cleaning technologies to inhibit biofilm formation and consequently reduce biocorrosion.  相似文献   

6.
Microbiologically influenced corrosion: looking to the future.   总被引:5,自引:0,他引:5  
This review discusses the state-of-the-art of research into biocorrosion and the biofouling of metals and alloys of industrial usage. The key concepts needed to understand the main effects of microorganisms on metal decay, and current trends in monitoring and control strategies to mitigate the deleterious effects of biocorrosion and biofouling are also described. Several relevant cases of biocorrosion studied by our research group are provided as examples: (i) biocorrosion of aluminum and its alloys by fungal contaminants of jet fuels; (ii) sulfate-reducing bacteria (SRB)-induced corrosion of steel; (iii) biocorrosion and biofouling interactions in the marine environment; (iv) monitoring strategies for assessing biocorrosion in industrial water systems; (v) microbial inhibition of corrosion; (vi) use and limitations of electrochemical techniques for evaluating biocorrosion effects. Future prospects in the field are described with respect to the potential of innovative techniques in microscopy (environmental scanning electron microscopy, confocal scanning laser microscopy, atomic force microscopy), new spectroscopic techniques for the study of corrosion products and biofilms (energy dispersion X-ray analysis, X-ray photoelectron spectroscopy, electron microprobe analysis) and electrochemistry (electrochemical impedance spectroscopy, electrochemical noise analysis).  相似文献   

7.
Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time.  相似文献   

8.
AIMS: In order to evaluate the part played in biocorrosion by microbial groups other than sulfate-reducing bacteria (SRB), we characterized the phylogenetic diversity of a corrosive marine biofilm attached to a harbour pile structure as well as to carbon steel surfaces (coupons) immersed in seawater for increasing time periods (1 and 8 months). We thus experimentally checked corroding abilities of defined species mixtures. METHODS AND RESULTS: Microbial community analysis was performed using both traditional cultivation techniques and polymerase chain reaction cloning-sequencing of 16S rRNA genes. Community structure of biofilms developing with time on immersed coupons tended to reach after 8 months, a steady state similar to the one observed on a harbour pile structure. Phylogenetic affiliations of isolates and cloned 16S rRNA genes (rrs) indicated that native biofilms (developing after 1-month immersion) were mainly colonized by gamma-proteobacteria. Among these, Vibrio species were detected in majority with molecular methods while cultivation techniques revealed dominance of Enterobacteriaceae such as Citrobacter, Klebsiella and Proteus species. Conversely, in mature biofilms (8-month immersion and pile structure), SRB, and to a lesser extent, spirochaetes were dominant. CONCLUSIONS: Corroding activity detection assays confirmed that Enterobacteriaceae (members of the gamma-proteobacteria) were involved in biocorrosion of metallic material in marine conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: In marine biofilms, metal corrosion may be initiated by Enterobacteriaceae.  相似文献   

9.
Biofilms were used to produce gramicidin S (a cyclic decapeptide) to inhibit corrosion-causing, sulfate-reducing bacteria (SRB). In laboratory studies these biofilms protected mild steel 1010 continuously from corrosion in the aggressive, cooling service water of the AmerGen Three-Mile-Island (TMI) nuclear plant, which was augmented with reference SRB. The growth of both reference SRB (Gram-positive Desulfosporosinus orientis and Gram-negative Desulfovibrio vulgaris) was shown to be inhibited by supernatants of the gramicidin-S-producing bacteria as well as by purified gramicidin S. Electrochemical impedance spectroscopy and mass loss measurements showed that the protective biofilms decreased the corrosion rate of mild steel by 2- to 10-fold when challenged with the natural SRB of the TMI process water supplemented with D. orientis or D. vulgaris. The relative corrosion inhibition efficiency was 50–90% in continuous reactors, compared to a biofilm control which did not produce the antimicrobial gramicidin S. Scanning electron microscope and reactor images also revealed that SRB attack was thwarted by protective biofilms that secrete gramicidin S. A consortium of beneficial bacteria (GGPST consortium, producing gramicidin S and other antimicrobials) also protected the mild steel.  相似文献   

10.
Two different species of sulphate-reducing bacteria, strain classified by NCIMB as Desulfovibrio desulfuricans subspecies desulfuricans New Jersey (8313) isolated from the corroding heat exchanger, and SRB species recovered from a corroding ship hull anchored off the Indonesian coast (Indo isolate) were grown as laboratory batch cultures. Several factors such as the surface finish of substratum, metabolic activity of planktonic and sessile bacterial populations, initial attachment of cells to surfaces and subsequent formation of biofilms on the process of biodeterioration of mild steel in the presence of these two different species of SRB were investigated. The corrosion rates of mild steel were estimated by weight loss measurements and correlated with the density of sessile SRB population. The yield and composition of extracellular polymers released into the bulk phase of culture media were determined and the amount of dissolved hydrogen sulphide was monitored. The results revealed differences between SRB species in their aggressiveness towards mild steel under identical growth conditions, emphasising the importance of biochemistry and physiology of SRB for the biocorrosion process. Biochemical and genetic characterisation of SRB isolates chosen for this study are currently in progress.  相似文献   

11.
The oil-water-gas environments of oil production facilities harbour abundant and diverse microbial communities that can participate in deleterious processes such as biocorrosion. Several molecular methods, including pyrosequencing of 16S rRNA libraries, were used to characterize the microbial communities from an oil production facility on the Alaskan North Slope. The communities in produced water and a sample from a 'pig envelope' were compared in order to identify specific populations or communities associated with biocorrosion. The 'pigs' are used for physical mitigation of pipeline corrosion and fouling and the samples are enriched in surface-associated solids (i.e. paraffins, minerals and biofilm) and coincidentally, microorganisms (over 10(5) -fold). Throughout the oil production facility, bacteria were more abundant (10- to 150-fold) than archaea, with thermophilic members of the phyla Firmicutes (Thermoanaerobacter and Thermacetogenium) and Synergistes (Thermovirga) dominating the community. However, the structure (relative abundances of taxa) of the microbial community in the pig envelope was distinct due to the increased relative abundances of the genera Thermacetogenium and Thermovirga. The data presented here suggest that bulk fluid is representative of the biofilm communities associated with biocorrosion but that certain populations are more abundant in biofilms, which should be the focus of monitoring and mitigation strategies.  相似文献   

12.
Sediment samples were collected worldwide from 16 locations on four continents (in New York, California, New Jersey, Virginia, Puerto Rico, Venezuela, Italy, Latvia, and South Korea) to assess the extent of the diversity and the distribution patterns of sulfate-reducing bacteria (SRB) in contaminated sediments. The SRB communities were examined by terminal restriction fragment (TRF) length polymorphism (TRFLP) analysis of the dissimilatory sulfite reductase genes (dsrAB) with NdeII digests. The fingerprints of dsrAB genes contained a total of 369 fluorescent TRFs, of which <20% were present in the GenBank database. The global sulfidogenic communities appeared to be significantly different among the anthropogenically impacted (petroleum-contaminated) sites, but nearly all were less diverse than pristine habitats, such as mangroves. A global SRB indicator species of petroleum pollution was not identified. However, several dsrAB gene sequences corresponding to hydrocarbon-degrading isolates or consortium members were detected in geographically widely separated polluted sites. Finally, a cluster analysis of the TRFLP fingerprints indicated that many SRB microbial communities were most similar on the basis of close geographic proximity (tens of kilometers). Yet, on larger scales (hundreds to thousands of kilometers) SRB communities could cluster with geographically widely separated sites and not necessarily with the site with the closest proximity. These data demonstrate that SRB populations do not adhere to a biogeographic distribution pattern similar to that of larger eukaryotic organisms, with the greatest species diversity radiating from the Indo-Pacific region. Rather, a patchy SRB distribution is encountered, implying an initially uniform SRB community that has differentiated over time.  相似文献   

13.
A quantitative analysis of the rate of removal of rhodium(III) by a resting sulfate-reducing bacteria (SRB) consortium under different initial rhodium and biomass concentrations, pH, temperature, and electron donor was studied. Rhodium speciation was found to be the main factor controlling the rate of its removal from solution. SRB cells were found to have a higher affinity for anionic rhodium species, as compared to both cationic and neutral species, which become abundant when speciation equilibrium was reached. Consequently, a pH-dependent rate of rhodium removal from solution was observed. The maximum SRB uptake capacity for rhodium was found to be 66 mg of rhodium per gram of resting SRB biomass. Electron microscopy studies revealed a time-dependent localization and distribution of rhodium precipitates, initially intracellularly and then extracellularly, suggesting the involvement of an enzymatic reductive precipitation process. When a purified hydrogenase enzyme was incubated with rhodium chloride solution under hydrogen, 88% of the rhodium was removed within 1 h, whereas with a soluble extract from SRB 77% was removed within 10 min. Due to the low pH of the industrial effluent (1.31), the enzymatic reduction of rhodium by the purified hydrogenase was greatly limited, and it was apparent that an industrial effluent pretreatment was necessary before the application of an enzymatic treatment. In the present study, however, it was established that SRB are good candidates for the enzymatic recovery of rhodium from both aqueous solution and industrial effluent.  相似文献   

14.
Aims: A polyphasic approach was used to study the biodiversity bacteria associated with biocorrosion processes, in particular sulfate‐reducing bacteria (SRB) and thiosulfate‐reducing bacteria (TRB) which are described to be particularly aggressive towards metallic materials, notably via hydrogen sulfide release. Methods and Results: To study this particular flora, an infrared spectra library of 22 SRB and TRB collection strains were created using a Common Minimum Medium (CMM) developed during this study and standardized culture conditions. The CMM proved its ability to allow for growth of both SRB and TRB strains. These sulfurogen collection strains were clearly discriminated and differentiated at the genus level by fourier transform infrared (FT‐IR) spectroscopy. In a second step, infrared spectra of isolates, recovered from biofilms formed on carbon steel coupons immersed for 1 year in three different French harbour areas, were compared to the infrared reference spectra library. In parallel, molecular methods (M13‐PCR and 16S rRNA gene sequencing) were used to qualitatively evaluate the intra‐ and inter‐species genetic diversity of biofilm isolates. The biodiversity study indicated that strains belonging to the Vibrio genus were the dominant population; strains belonging to the Desulfovibrio genus (SRB) and Peptostreptococcaceae were also identified. Conclusion: Overall, the combination of the FT‐IR spectroscopy and molecular approaches allowed for the taxonomic and ecological study of a bacterial flora, cultivated on CMM, associated with microbiology‐induced corrosion (MIC) processes. Significance and Impact of the Study: Via the use of the CMM medium, the culture of marine bacteria (including both SRB and TRB bacteria) was allowed, and the implication of nonsulforogen bacteria in MIC was observed. Their involvement in the biocorrosion phenomena will have to be studied and taken into account in the future.  相似文献   

15.
Environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM) were compared as tools for the observation of bacterial biofilms developed on carbon steel and AISI 316 stainless steel surfaces under stagnant conditions. Biofilms were generated in batch cultures of two different isolates of marine sulphate reducing bacteria (SRB) and in cultures consisting of mixed populations of acidophilic bacteria, known as "acid streamers";. Imaging of single SRB cells on mica was also carried out to reveal the surface topography of individual bacterial cells at nanometre resolution. Following the removal of biofilms, the stainless steel surfaces were profiled using AFM to determine the degree of steel deterioration. ESEM and AFM studies of bacterial biofilms in-situ, gave both qualitative and quantitative information on biofilm structure at high resolution. The use of AFM image analysis software allowed estimation of the width and height of bacterial cells, the thickness and width of exopolymeric (EPS) capsule and bacterial flagella, as well as characterisation of the surface roughness of the steel, including measurements of depth and diameter of individual pits. Exposure of stainless steel specimens to acid streamers resulted in a significant increase in the surface roughness of the steel, compared to specimens placed in sterile medium.  相似文献   

16.
The various problems associated with treating sulphate-containing wastewaters stem inherently from successful competitive interactions between sulphate reducing bacteria (SRB) and other bacteria involved in the process, resulting in the formation of H2S. Prevention of in-reactor sulphide generation by use of specific SRB inhibitors presents a potential solution. Nitrite has been reported to be a specific inhibitor of SRB but its possible toxicity to syntrophic and methanogenic members of the anaerobic consortium has not been investigated. In batch activity and toxicity tests, under both mesophilic and thermophilic conditions, nitrite, at concentrations of up to 150 mg L–1, was found to be ineffective as a specific inhibitor of SRB, and was also shown to have an inhibitory effect on the activity of syntrophic and methane-producing bacteria in mesophilic and thermophilic digester sludge samples.  相似文献   

17.
Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L?1) levels of hydrogen sulfide and high numbers (107 mL?1) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.  相似文献   

18.
Acetate, propionate, and butyrate, collectively referred to as volatile fatty acids (VFA), are considered among the most important electron donors for sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (hNRB) in oil fields. Samples obtained from a field in the Neuquén Basin, western Argentina, had significant activity of mesophilic SRB, hNRB, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). In microcosms, containing VFA (3 mM each) and excess sulfate, SRB first used propionate and butyrate for the production of acetate, which reached concentrations of up to 12 mM prior to being used as an electron donor for sulfate reduction. In contrast, hNRB used all three organic acids with similar kinetics, while reducing nitrate to nitrite and nitrogen. Transient inhibition of VFA-utilizing SRB was observed with 0.5 mM nitrite and permanent inhibition with concentrations of 1 mM or more. The addition of nitrate to medium flowing into an upflow, packed-bed bioreactor with an established VFA-oxidizing SRB consortium led to a spike of nitrite up to 3 mM. The nitrite-mediated inhibition of SRB led, in turn, to the transient accumulation of up to 13 mM of acetate. The complete utilization of nitrate and the incomplete utilization of VFA, especially propionate, and sulfate indicated that SRB remained partially inhibited. Hence, in addition to lower sulfide concentrations, an increase in the concentration of acetate in the presence of sulfate in waters produced from an oil field subjected to nitrate injection may indicate whether the treatment is successful. The microbial community composition in the bioreactor, as determined by culturing and culture-independent techniques, indicated shifts with an increasing fraction of nitrate. With VFA and sulfate, the SRB genera Desulfobotulus, Desulfotignum, and Desulfobacter as well as the sulfur-reducing Desulfuromonas and the NR-SOB Arcobacter were detected. With VFA and nitrate, Pseudomonas spp. were present. hNRB/NR-SOB from the genus Sulfurospirillum were found under all conditions.  相似文献   

19.
Almost all the known isolates of acidophilic or acid-tolerant sulphate-reducing bacteria (SRB) belong to the spore-forming genus Desulfosporosinus in the Firmicutes. The objective of this study was to isolate acidophilic/acid-tolerant members of the genus Desulfovibrio belonging to deltaproteobacterial SRB. The sample material originated from microbial mat biomass submerged in mine water and was enriched for sulphate reducers by cultivation in anaerobic medium with lactate as an electron donor. A stirred tank bioreactor with the same medium composition was inoculated with the sulphidogenic enrichment. The bioreactor was operated with a temporal pH gradient, changing daily, from an initial pH of 7.3 to a final pH of 3.7. Among the bacteria in the bioreactor culture, Desulfovibrio was the only SRB group retrieved from the bioreactor consortium as observed by 16S rRNA-targeted denaturing gradient gel electrophoresis. Moderately acidophilic/acid-tolerant isolates belonged to Desulfovibrio aerotolerans-Desulfovibrio carbinophilus-Desulfovibrio magneticus and Desulfovibrio idahonensis-Desulfovibrio mexicanus clades within the genus Desulfovibrio. A moderately acidophilic strain, Desulfovibrio sp. VK (pH optimum 5.7) and acid-tolerant Desulfovibrio sp. ED (pH optimum 6.6) dominated in the bioreactor consortium at different time points and were isolated in pure culture.  相似文献   

20.
The effect of microbial control of souring on the extent of corrosion was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in an SRB consortium enriched from produced water from a Canadian oil reservoir. The average corrosion rate induced by the SRB consortium (1.4 g x m(-2) x day(-1)) was faster than that observed in the presence of strain Lac6 (0.2 g x m(-2) x day(-1)). Examination of the metallic coupons at the end of the tests indicated a uniform corrosion in both cases. Addition of CVO and 10 mM nitrate to a fully grown culture of Lac6 or the SRB consortium led to complete removal of sulfide from the system and a significant increase in the population of CVO, as determined by reverse sample genome probing. In the case of the SRB consortium addition of just nitrate (10 mM) had a similar effect. When grown in the absence of nitrate, the consortium was dominated by Desulfovibrio sp. strains Lac15 and Lac29, while growth in the presence of nitrate led to dominance of Desulfovibrio sp. strain Lac3. The addition of CVO and nitrate to the Lac6 culture or nitrate to the SRB consortium accelerated the average corrosion rate to 1.5 and 2.9 g x m(-2) x day(-1), respectively. Localized corrosion and the occurrence of pitting were apparent in both cases. Although the sulfide concentration (0.5-7 mM) had little effect on corrosion rates, a clear increase of the corrosion rate with increasing nitrate concentration was observed in experiments conducted with consortia enriched from produced water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号