首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of data support the existence of an opioid receptor complex composed of distinct but interacting mu cx and delta cx binding sites, where "cx" indicates "in the complex." The ability of subantinociceptive doses of [Leu5]enkephalin and [Met5]enkephalin to potentiate and attenuate morphine-induced antinociception, respectively, is thought to be mediated via their binding to the delta cx binding site. [D-Pen2,D-Pen5]Enkephalin also modulates morphine-induced antinociception, but has very low affinity for the delta cx binding site in vitro. In the present study, membranes were depleted of their delta ncx binding sites by pretreatment with the site-directed acylating agent, (3S,4S)-(+)-trans-N-[1-[2-(4-isothiocyanato)phenyl)-ethyl]-3-methy l-4- piperidyl]-N-phenylpropaneamide hydrochloride, which permits selective labeling of the delta cx binding site with [3H][D-Ala2,D-Leu5]enkephalin. The major findings of this study are that with this preparation of rat brain membranes: a) there are striking differences between the delta cx and mu binding sites; and b) both [D-Pen2,D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin exhibit high affinity for the delta cx binding site.  相似文献   

2.
Several hydrazone, oxime, carbazone and semicarbazone derivatives of 14-alkoxycodeinones and 14-alkoxydihydrocodeinones were synthesised [1] and characterised in in vitro radioligand binding assays in rat brain membrane preparations. The tested compounds show the highest affinity for the mu opioid binding sites and most of them have agonist character. Subtype analysis of the binding shows mu2 specificity. However, some of these ligands are able to block partially (40-60%) the high affinity (putative mu1) opioid binding sites while all of them act as reversible ligands at the low affinity (putative mu2) sites.  相似文献   

3.
[3H]U69,593 and [3H]ethylketazocine (mu + delta suppressed) binding was measured in homogenates of guinea-pig brain. Both ligands bind with high affinity to a single class of opioid sites. The relative equilibrium dissociation constant (KD) for [3H]U69,593 is 1.15 nM, while [3H]ethylketazocine has a KD value of 0.33 nM. Their respective maximum binding capacities are 4.49 and 4.48 pmol/g of wet tissue. Various mu-selective, delta-selective, kappa-selective, and nonselective opioids were tested in competition studies against the binding of [3H]U69,593 or [3H]ethylketazocine (in the presence of mu- and delta-blockers) to measure their relative affinity. [D-Ala2, MePhe4,Gly5-ol]enkephalin (mu-selective) has low affinity (600-3000 nM) and [D-Pen2,D-Pen5]enkephalin and [D-Ser2, Leu5, Thr6]enkephalin (delta-selective) have very low affinities (greater than 20,000 nM) at the sites labelled with [3H]U69,593 or [3H]ethylketazocine. On the other hand, unlabelled U69,593, U50,488H, and tifluadom (all three kappa-selective substances) display high affinity (1-5 nM) at those sites. Nonselective opioids, such as bremazocine, levorphanol, and ethylketazocine show similar affinities at the sites labelled with [3H]U69,593 and at the sites labelled with [3H]ethylketazocine. These data indicate that [3H]U69,593 is a selective high-affinity ligand for the same sites that are labelled with [3H]ethylketazocine (in the presence of mu- and delta-blockers) and that these are kappa-sites.  相似文献   

4.
In the present study we examined the interaction of opiates with the delta and mu opioid binding sites in the bovine adrenal medulla. [3H][D-Ala2, D-Leu5]-enkephalin ( [3H]DADLE) in the presence of saturating concentrations of morphiceptin was used to analyze delta site interactions, whereas either [3H]DADLE in the presence of saturation concentrations of [D-Ser2, Leu5]-enkephalin-Thr6 (DSLET) or [3H][D-Ala2, Me-Phe4, Gly5-ol]-enkephalin ( [3H]DAGO) was used for the determination of mu sites. Both binding sites were found to interact stereoselectively with opiates. The binding was affected differentially by proteolytic enzymes (trypsin, alpha-chymotrypsin, pepsin), N-ethylmaleimide, and A2-phospholipase. Kinetic and equilibrium binding studies revealed that in each case radiolabeled opiates interact with one class of binding sites, following simple second-order bimolecular kinetics. Competition for binding by opiates and opioid peptides confirmed the delta and mu selectivity of these sites. Monovalent (Na+, Li+, K+) and divalent (Mg2+, Mn2+, Ca2+) ions interacted differentially with these two binding sites: In general, monovalent cations affected preferentially the apparent number of binding sites, whereas divalent ions modified the equilibrium dissociation constant. Furthermore, positive or negative cooperativity and an apparent heterogeneity of binding sites were detected under some ionic conditions.  相似文献   

5.
A series of cyclic conformationally restricted penicillamine containing somatostatin octapeptide analogues have been prepared by standard solid phase synthetic techniques and tested for their ability to inhibit specific [125I]CGP 23,996 (des-Ala1-,Gly2-[desamino-Cys3Tyr11]-dicarba3, 14-somatostatin), [3H]naloxone or [3H]DPDPE ([D-Pen2-D-Pen5]enkephalin) binding in rat brain membrane preparations. We now report structure-activity relationship studies with the synthesis of our most potent and selective mu opioid receptor compound D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, which we refer to as Cys2Tyr3Orn5Pen7-amide. While this octapeptide exhibited high affinity (IC50 = 2.80 nM) for an apparently single population of binding sites (nH = 0.89 +/- 0.1) and exceptional selectivity for mu opioid receptors with an IC50(DPDPE)/IC50 (naloxone) ratio of 4,829, it also displayed very low affinity for somatostatin receptors (IC50 = 22,700 nM). Thus, Cys2Tyr3Orn5Pen7-amide may be the ligand of choice for further characterization of mu opioid receptors and for examining the physiological role of this class of receptors.  相似文献   

6.
In order to assess the individual effects of each of the 3-methyl groups in residue 2 of [D-Pen2, D-Pen5]enkephalin on binding affinity to mu and delta opioid receptors, (2S,3S)methylcysteine ((3S)Me-D-Cys) and (2S,3R)methylcysteine ((3R)Me-D-Cys) were synthesized and incorporated into the analogs, [(3S)Me-D-Cys2, D-Pen5] enkephalin and [(3R)Me-D-Cys2, D-Pen5]enkephalin. Of these analogs, [(3S)Me-D-Cys2, D-Pen5]enkephalin appears from 1H n.m.r. spectra to assume a conformation similar to those of [D-Pen2, D-Pen5]enkephalin and the less delta receptor-selective, but more potent, [D-Cys2, D-Pen5]enkephalin. Assessment of binding affinity to mu and delta receptors revealed that [(3S)Me-D-Cys2, D-Pen5]enkephalin exhibits delta receptor affinity intermediate between [D-Pen2, D-Pen5]enkephalin and [D-Cys2, D-Pen5]enkephalin while its mu receptor affinity is similar to that of [D-Cys2, D-Pen5]enkephalin. These results suggest that, for [D-Pen2, D-Pen5]enkephalin, adverse steric interactions between the D-Pen2 pro-R methyl group and the mu receptor binding site lead to the low mu receptor binding affinity observed for this analog. By contrast, both the pro-R and pro-S D-Pen2 methyl groups lead to minor steric interactions which contribute to the somewhat lower delta receptor affinity of this compound.  相似文献   

7.
Displacement studies of [3H]-[D-Ala2-MePhe4-Gly-ol5]-enkephalin ([3H]-DAGO) and [3H]-[D-Ala2-D-Leu5]-enkephalin ([3H]-DADL) by the corresponding unlabeled ligands show that there are at least three classes of sites which bind these enkephalin analogs with high affinity. Using computer modeling, the introduction of the third site significantly improved the goodness of fit in ten consecutive experiments. These sites appear to correspond to the mu, delta and mu 1 sites, with mean dissociation constants of 11, 1.3 and 0.9 nM for DADL and 2.5, 300 and 0.3 nM for DAGO, respectively.  相似文献   

8.
Drug interactions with 5-HT1 (5-hydroxytryptamine type 1) binding site subtypes were analyzed in rat frontal cortex. 8-Hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) displays high affinity (Ki 3.3 +/- 1 nM) for 29 +/- 3% of total [3H]5-HT binding in rat frontal cortex and low affinity (Ki 9,300 +/- 1,000) for 71 +/- 4% of the remaining 5-HT1 sites. Therefore, non-5-HT1A binding in rat frontal cortex was defined as specific [3H]5-HT binding observed in the presence of 100 nM 8-OH-DPAT. 5-Methoxy 3-(1,2,3,6-tetrahydro-4-pyridinyl) 1 H indole (RU 24969), 1-(m-trifluoromethylphenyl)piperazine (TFMPP), mianserin, and methysergide produce shallow competition curves of [3H]5-HT binding from non-5-HT1A sites. Addition of 10(-3) M GTP does not increase the apparent Hill slopes of these competition curves. Computer-assisted iterative curve fitting suggests that these drugs can discriminate two distinct subpopulations of non-5-HT1A binding sites, each representing approximately 35% of the total [3H]5-HT binding in the rat frontal cortex. All three 5-HT1 binding site subtypes display nanomolar affinity for 5-HT and 5-methoxytryptamine. A homogeneous population of 5-HT1A sites can be directly labeled using [3H]8-OH-DPAT. These sites display nanomolar affinity for 8-OH-DPAT, WB 4101, RU 24969, 2-(4-[4-(2-pyrimidinyl)-1-piperazinyl] butyl)-1,2-benzisothiazol-3-(2H)one-1, 1-dioxidehydrochloride (TVX Q 7821), 5-methoxydimethyltryptamine, and d-lysergic acid diethylamide. The potencies of RU 24969, TFMPP, and quipazine for [3H]5-HT binding are increased by addition of 100 nM 8-OH-DPAT and 3,000 nM mianserin to the [3H]5-HT binding assay. Moreover, the drugs have apparent Hill slopes near 1 under these conditions. This subpopulation of total [3H]5-HT binding is designated 5-HT1B. By contrast, methysergide and mianserin become more potent inhibitors of residual [3H]5-HT binding to non-5-HT1A sites in the presence of 100 nM 8-OH-DPAT and 10 nM RU 24969. The drug competition curves under these conditions have apparent Hill slopes of near unity and these sites are designated 5-HT1C. Drug competition studies using a series of 24 agents reveals that each 5-HT1 subtype site has a unique pharmacological profile. These results suggest that radioligand studies can be used to differentiate three distinct subpopulations of 5-HT1 binding sites labeled by [3H]5-HT in rat frontal cortex.  相似文献   

9.
The selective delta opioid agonist [D-Ala2]deltorphin-I was radioiodinated and the product purified using reverse phase HPLC. The binding characteristics and distribution profile of [125I][D-Ala2]deltorphin-I were assessed in mouse brain using homogenate binding techniques and quantitative autoradiography. [125I][D-Ala2]deltorphin-I bound with high affinity to a single class of sites (KD = 0.5 nM) in brain membrane preparations and striatal sections. Competition studies indicated that [125I][D-Ala2]deltorphin-I was selectively labeling delta opioid receptors as shown by the ratio of apparent affinities for mu and delta receptors (KI mu/KI delta = 1388). The autoradiographical distribution profile of [125I][D-Ala2]deltorphin-I binding sites was also consistent with that of other delta-selective radioligands. The data indicate that [125I][D-Ala2]deltorphin-I binds to delta opioid receptors with high affinity and selectivity. Because of its very high specific activity, it can be detected rapidly with high sensitivity by autoradiographic emulsion.  相似文献   

10.
Endomorphin-2 (Tyr-Pro-Phe-Phe-NH2) binds with high affinity and selectivity to the mu-opioid receptor. In the present study, [125I]endomorphin-2 has been used to characterize mu-opioid-binding sites on transplantable mouse mammary adenocarcinoma cells. Cold saturation experiments performed with [125I]endomorphin-2 (1 nM) show biphasic binding curves in Scatchard coordinates. One component represents high affinity and low capacity (K(d) = 18.79 +/- 1.13 nM, B(max) = 635 +/- 24 fmol/mg protein) and the other shows low affinity and higher capacity (K(d) = 7.67 +/- 0.81 microM, B(max) = 157 +/- 13 pmol/mg protein) binding sites. The rank order of agonists competing for the [125I]endomorphin-2 binding site was [d-1-Nal3]morphiceptin > endomorphin-2 > [d-Phe3]morphiceptin > morphiceptin > [d-1-Nal3]endomorphin-2, indicating binding of these peptides to mu-opioid receptors. The uptake of 131I-labeled peptides administered intraperitoneally to tumor-bearing mice was also investigated. The highest accumulation in the tumor was observed for [d-1-Nal3)morphiceptin, which reached the value of 8.19 +/- 1.14% dose/g tissue.  相似文献   

11.
The binding properties of 14 beta-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM [3H] [D-Ala2,(Me)Phe4,Gly(ol)5]enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the mu binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The mu receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the delta-selective peptide [3H] [D-penicillamine2,D-penicillamine5]enkephalin (DPDPE) and (-)-[3H]bremazocine in the presence of mu and delta blockers, selective for kappa binding sites. Under conditions where 90% of the 0.25 nM [3H]DAGO binding sites were blocked, 80% of the 0.8 nM [3H]naloxone binding and 50% of the 0.25 nM 125I-labeled beta h-endorphin binding were inhibited by BAM alkylation. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the mu site did not afford protection.2+hese studies have demonstrated that when a disulfide bond  相似文献   

12.
Binding characteristics of a new, conformationally constrained, halogenated enkephalin analogue, [3H]-[D-penicillamine2, pCl-Phe4, D-penicillamine5]enkephalin ([3H]pCl-DPDPE), were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C determined a dissociation constant (Kd) of 328 +/- 27.pM and a receptor density (Bmax) of 87.2 +/- 4.2 fmol/mg protein. Kinetic studies demonstrated biphasic association for [3H]pCl-DPDPE, with association rate constants of 5.05 x 10(8) +/- 2.5 x 10(8) and 0.147 +/- 10(8) +/- 0.014 x 10(8) M-1 min-1. Dissociation was monophasic with a dissociation rate constant of 2.96 x 10(-3) +/- 0.25 x 10(-3) min-1. The average Kd values determined by these kinetic studies were 8.4 +/- 2.7 pM and 201 +/- 4 pM. Competitive inhibition studies demonstrated that [3H]pCl-DPDPE has excellent selectively for the delta opioid receptor. [3H]pCl-DPDPE binding was inhibited by low concentrations of ligands selective for delta opioid receptor relative to the concentrations required by ligands selective for mu and kappa sites. These data show that [3H]pCl-DPDPE is a highly selective, high affinity ligand which should be useful in characterizing the delta opioid receptor.  相似文献   

13.
Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of mu and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of [3H]-D-Ala2-D-Leu5-enkephalin (DADLE) in the presence of 10(-5) M D-Pro4-morphiceptin (to block the mu receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of [3H]-dihydromorphine, together with the higher potency of morphine analogues to displace [3H]-naloxone binding established the presence of mu sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of [3H]-DADLE binding. The observed heterogeneity of opioid receptors in cultured SH-SY5Y cells would serve as an excellent model for the biochemical and pharmacological characterization of brain opiate receptors.  相似文献   

14.
The binding properties of opioid receptors on isolated nerve terminals (neurosecretosomes) from bovine posterior pituitaries were characterized. Both [3H]etorphine and [3H]ethylketocyclazocine ([3H]EKC) showed high-affinity binding with complex binding isotherms, consistent with the presence of multiple classes of binding sites. [D-Ala2,D-Leu5]enkephalin showed no specific binding and failed to displace [3H]etorphine at high concentrations, indicating the absence of mu, delta, or benzomorphan (kappa 2) sites. Mathematical modelling of the data suggested the presence of three classes of binding sites. The first was of high affinity with Kd values of 0.9 and 2.0 nM for etorphine and EKC, respectively. The second class of sites appeared to bind etorphine with a KD of 150 nM, and EKC with extremely low affinity (unmeasurable binding). The third class of sites was characterized by KD values of 7 and 2 microM for etorphine and EKC, respectively. These results indicate that the nerve terminals of bovine posterior pituitary contain opioid binding sites of the kappa type. Furthermore, these binding sites appear heterogeneous, consisting of at least two and possibly more subtypes or states.  相似文献   

15.
Insertion of bulky tertiobutyl groups into the sequence of [D-Ser2,Leu5]enkephalyl-Thr6 leads to a conformationally induced large increase in selectivity toward rat brain delta-opioid binding sites, as shown by the ratio of apparent affinities for mu and delta receptors of [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6,KI(mu)/KI(delta) = 130, and [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 (O-tert-butyl),KI(mu)/KI(delta) = 280. In addition to a selectivity similar to that of the cyclic compounds [D-Pen2, D-Pen5]enkephalin and [D-Pen2,L-Pen5]enkephalin, the affinity of [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 for the delta sites of rat brain membranes is significantly better (KD = 2.2 nM) than that of [3H][D-Pen2,D-Pen5]enkephalin (KD approximately 8.5 nM). Therefore, [3H][D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6 seems to be the most appropriate delta-probe currently available for binding studies. Moreover, the lipophilic and protected peptide [D-Ser2(O-tert-butyl),Leu5]enkephalyl-Thr6(O-tert-butyl) behaves as the most specific ligand for the delta-opioid binding sites and appears appropriate for in vivo investigations. The inactive analogue [D-Thr2(O-tert-butyl),Leu5]enkephalyl-Thr6 might serve as a negative control in biochemical or pharmacological studies.  相似文献   

16.
The inhibition of [3H]5-hydroxytryptamine [( 3H]5-HT) binding in rat brain by 1-[2-(3-bromoacetamidophenyl)ethyl]-4-(3-trifluoromethylphenyl) piperazine (BrAcTFMPP) and that by spiperone were compared. Spiperone inhibition of [3H]5-HT binding in cortex was consistent with displacement from two sites with dissociation constants (KD) of 24 nM (5-HT-1A site) and 19 microM (5-HT-1B site) for spiperone. BrAcTFMPP also discriminated two subpopulations of [3H]5-HT binding sites with dissociation constants of 0.5 nM and 146 nM for the compound. The proportion of high-affinity sites for each compound represented about 35% of the specific [3H]5-HT binding. In the presence of 1 microM spiperone, a concentration that saturates the 5-HT-1A sites while having a minimal effect on 5-HT-1B sites, BrAcTFMPP displaced [3H]5-HT from a single site with a KD for BrAcTFMPP of 145 nM. The inhibition of [3H]5-HT binding by spiperone in the presence of 30 nM BrAcTFMPP was best fit by a single-site model with a KD of 21 microM for spiperone. In corpus striatum, 5-HT-1A sites, as defined with spiperone, represented 15% of the specific [3H]5-HT binding and 30 nM BrAcTFMPP also blocked about 15% of the binding. A significant difference between spiperone and BrAcTFMPP was their affinity for 5-HT-2 receptors. BrAcTFMPP (KD = 41 nM) had an 80-fold lower affinity for these sites than spiperone (KD = 0.5 nM). Thus, BrAcTFMPP and spiperone discriminate the same two subpopulations of [3H]5-HT binding sites and BrAcTFMPP displays a high affinity and a selectivity for 5-HT-1A sites versus both 5-HT-1B and 5-HT-2 sites.  相似文献   

17.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

18.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

19.
Y Audigier  B Attali  H Mazarguil  J Cros 《Life sciences》1982,31(12-13):1287-1290
The guinea-pig striatum contains an apparent homogenous population of [3H]-etorphine high affinity sites (KD = 0.56 +/- 0.12 nM; Bmax = 267 +/- 47 fmoles/mg protein). The specific binding is completely abolished by 5 microM (D-Ala2, D-Leu5) enkephalin whereas an important residual binding is still present after the blockade of mu and delta sites. The binding properties of these residual sites are very similar to those of the benzomorphan sites characterized in rat brain and spinal cord. From the different binding properties of kappa and benzomorphan sites, the subdivision into kappa1 (kappa sites) and kappa2 (benzomorphan sites) is discussed.  相似文献   

20.
The studies reported here involve an exploration of the sites on atrial myocyte membranes with which adenosine interacts to produce its potent physiological effects in atrial muscle. Specific, high affinity binding of the stable adenosine analogs 2-chloro[3H]adenosine (2-ClAdo) and [3H]adenosine 5'-N-ethylcarboxamide (NECA) to atrial sarcolemmal membranes was measured in kinetic and equilibrium studies at 4 degrees C and 35 degrees C. Analysis of the [3H]2-ClAdo binding isotherm indicated the presence of two classes of binding site with equilibrium Kassoc values estimated to be 5.7 X 10(7) M-1 and 2.7 X 10(6) M-1. Displacement of bound [3H]2-ClAdo by adenosine 5'-N-cyclopropylcarboxamide (NCPCA) and by several N6-substituted adenosine analogs confirmed the presence of two classes of binding site. Analysis of the [3H]NECA binding also revealed the presence of two types of binding site for this ligand. The methylxanthines isobutylmethylxanthine and theophylline displaced bound [3H]2-ClAdo whereas adenosine uptake inhibitors and several other purines showed little activity. These atrial membrane binding sites exhibit many of the characteristics of the physiological adenosine receptors studied in intact atria. Furthermore, the [3H]2-ClAdo binding sites were sensitive to treatment with proteolytic enzymes, suggesting that these sites exist on sarcolemmal membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号