首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
2.
We examine the behavior of sexual and asexual populations in modular multipeaked fitness landscapes and show that sexuals can systematically reach different, higher fitness adaptive peaks than asexuals. Whereas asexuals must move against selection to escape local optima, sexuals reach higher fitness peaks reliably because they create specific genetic variants that "skip over" fitness valleys, moving from peak to peak in the fitness landscape. This occurs because recombination can supply combinations of mutations in functional composites or "modules," that may include individually deleterious mutations. Thus when a beneficial module is substituted for another less-fit module by sexual recombination it provides a genetic variant that would require either several specific simultaneous mutations in an asexual population or a sequence of individual mutations some of which would be selected against. This effect requires modular genomes, such that subsets of strongly epistatic mutations are tightly physically linked. We argue that such a structure is provided simply by virtue of the fact that genomes contain many genes each containing many strongly epistatic nucleotides. We briefly discuss the connections with "building blocks" in the evolutionary computation literature. We conclude that there are conditions in which sexuals can systematically evolve high-fitness genotypes that are essentially unevolvable for asexuals.  相似文献   

3.
Weissman DB  Feldman MW  Fisher DS 《Genetics》2010,186(4):1389-1410
Biological traits result in part from interactions between different genetic loci. This can lead to sign epistasis, in which a beneficial adaptation involves a combination of individually deleterious or neutral mutations; in this case, a population must cross a "fitness valley" to adapt. Recombination can assist this process by combining mutations from different individuals or retard it by breaking up the adaptive combination. Here, we analyze the simplest fitness valley, in which an adaptation requires one mutation at each of two loci to provide a fitness benefit. We present a theoretical analysis of the effect of recombination on the valley-crossing process across the full spectrum of possible parameter regimes. We find that low recombination rates can speed up valley crossing relative to the asexual case, while higher recombination rates slow down valley crossing, with the transition between the two regimes occurring when the recombination rate between the loci is approximately equal to the selective advantage provided by the adaptation. In large populations, if the recombination rate is high and selection against single mutants is substantial, the time to cross the valley grows exponentially with population size, effectively meaning that the population cannot acquire the adaptation. Recombination at the optimal (low) rate can reduce the valley-crossing time by up to several orders of magnitude relative to that in an asexual population.  相似文献   

4.
Fitness valleys, in which mutations at different loci are singly deleterious but jointly beneficial, arise because of reciprocal sign epistasis. Recent theoretical work provides analytical approximations of times to cross fitness valleys via three mechanisms: sequential fixation, stochastic tunnelling and recombination. These times depend critically on the effective population size (Ne). Human immunodeficiency virus type 1 (HIV‐1) encounters fitness valleys in adapting to its secondary cell‐surface chemokine coreceptor, CXCR4. Adaptation to CXCR4 tends to occur late in infection and only in about 50% of patients and is associated with disease progression. It has been hypothesized that the need to cross fitness valleys may explain the delayed and inconsistent adaptation to CXCR4. We have identified four fitness valleys from a previous study of fitness epistasis in adaptation to CXCR4 and use estimates of the within‐patient variance Ne for different patient treatment statuses and infection stages (conditions) to estimate times to cross the valleys. These valleys may be crossed predominantly by stochastic tunnelling, although mean crossing times are consistently longer than the durations of the conditions for which they are calculated. These results were confirmed with stochastic simulation. Simulations show that crossing times for a given condition are highly variable and that for each condition there is a low probability of crossing each valley. These findings support the hypothesis that fitness valleys constrain the adaptation of HIV‐1 to CXCR4. This study provides the first detailed analysis of the evolutionary dynamics associated with empirical fitness valleys.  相似文献   

5.
Epistasis for fitness means that the selective effect of a mutation is conditional on the genetic background in which it appears. Although epistasis is widely observed in nature, our understanding of its consequences for evolution by natural selection remains incomplete. In particular, much attention focuses only on its influence on the instantaneous rate of changes in frequency of selected alleles via epistatic contribution to the additive genetic variance for fitness. Thus, in this framework epistasis only has evolutionary importance if the interacting loci are simultaneously segregating in the population. However, the selective accessibility of mutational trajectories to high fitness genotypes may depend on the genetic background in which novel mutations appear, and this effect is independent of population polymorphism at other loci. Here we explore this second influence of epistasis on evolution by natural selection. We show that it is the consequence of a particular form of epistasis, which we designate sign epistasis. Sign epistasis means that the sign of the fitness effect of a mutation is under epistatic control; thus, such a mutation is beneficial on some genetic backgrounds and deleterious on others. Recent experimental innovations in microbial systems now permit assessment of the fitness effects of individual mutations on multiple genetic backgrounds. We review this literature and identify many examples of sign epistasis, and we suggest that the implications of these results may generalize to other organisms. These theoretical and empirical considerations imply that strong genetic constraint on the selective accessibility of trajectories to high fitness genotypes may exist and suggest specific areas of investigation for future research.  相似文献   

6.
Several models have been suggested to explain the origin and maintenance of recombination. Here I present the results from computer simulations of multilocus haploid and diploid genotypes in small populations. Each chromosome consisted of 1001 loci where deleterious mutations occurred. At "equilibrium" for mutation-selection-genetic drift balance a single recombination variant was introduced to the population in the middle of a chromosome. On average 75,000 replicates for each combination of parameters were followed to fixation or loss of the modifier allele. The results show that, in a small population, increased recombination can be selected, even in the absence of epistasis or beneficial mutations. The effect of the mutation rate for deleterious mutations depends on the ploidy level and the recessiveness of deleterious mutations. A higher deleterious mutation rate is required for an increase in recombination rate to be favored in haploid populations. Increased recombination could not evolve in the case of strong associative overdominance.  相似文献   

7.
Rate of adaptive peak shifts with partial genetic robustness   总被引:2,自引:0,他引:2  
How adaptive evolution occurs with individually deleterious but jointly beneficial mutations has been one of the major problems in population genetics theory. Adaptation in this case is commonly described as a population's escape from a local peak to a higher peak on Sewall Wright's fitness landscape. Recent molecular genetic and computational studies have suggested that genetic robustness can facilitate such peak shifts. If phenotypic expressions of new mutations are suppressed under genetic robustness, mutations that are otherwise deleterious can accumulate in the population as neutral variants. When the robustness is perturbed by an environmental change or a major mutation, these variants become exposed to natural selection. It is argued that this process promotes adaptation because allelic combinations enriched under genetic robustness can then be positively selected. Here, I propose simple two- and three-locus models of adaptation with partial genetic robustness as suggested by recent studies. The waiting time until the fixation of an adaptive haplotype was observed in stochastic simulations and compared to the expectation without robustness. It is shown that peak shifts can be delayed or accelerated depending on the conditions of genetic robustness. The evolutionary significance of these processes is discussed.  相似文献   

8.
Identifying and quantifying the benefits of sex and recombination is a long-standing problem in evolutionary theory. In particular, contradictory claims have been made about the existence of a benefit of recombination on high dimensional fitness landscapes in the presence of sign epistasis. Here we present a comparative numerical study of sexual and asexual evolutionary dynamics of haploids on tunably rugged model landscapes under strong selection, paying special attention to the temporal development of the evolutionary advantage of recombination and the link between population diversity and the rate of adaptation. We show that the adaptive advantage of recombination on static rugged landscapes is strictly transitory. At early times, an advantage of recombination arises through the possibility to combine individually occurring beneficial mutations, but this effect is reversed at longer times by the much more efficient trapping of recombining populations at local fitness peaks. These findings are explained by means of well-established results for a setup with only two loci. In accordance with the Red Queen hypothesis the transitory advantage can be prolonged indefinitely in fluctuating environments, and it is maximal when the environment fluctuates on the same time scale on which trapping at local optima typically occurs.  相似文献   

9.
With a small effective population size, random genetic drift is more important than selection in determining the fate of new alleles. Small populations therefore accumulate deleterious mutations. Left unchecked, the effect of these fixed alleles is to reduce the reproductive capacity of a species, eventually to the point of extinction. New beneficial mutations, if fixed by selection, can restore some of this lost fitness. This paper derives the overall change in fitness due to fixation of new deleterious and beneficial alleles, as a function of the distribution of effects of new mutations and the effective population size. There is a critical effective size below which a population will on average decline in fitness, but above which beneficial mutations allow the population to persist. With reasonable estimates of the relevant parameters, this critical effective size is likely to be a few hundred. Furthermore, sexual selection can act to reduce the fixation probability of deleterious new mutations and increase the probability of fixing new beneficial mutations. Sexual selection can therefore reduce the risk of extinction of small populations.  相似文献   

10.
RNA viruses are the main source of emerging infectious diseases because of the evolutionary potential bestowed by their fast replication, large population sizes and high mutation and recombination rates. However, an equally important property, which is usually neglected, is the topography of the fitness landscape. How many fitness maxima exist and how well they are connected is especially interesting, as this determines the number of accessible evolutionary pathways. To address this question, we have reconstructed a region of the fitness landscape of tobacco etch potyvirus constituted by mutations observed during the experimental adaptation of the virus to the novel host Arabidopsis thaliana. Fitness was measured for many genotypes and showed the existence of multiple peaks and holes in the landscape. We found prevailing epistatic effects between mutations, with cases of reciprocal sign epistasis being common among pairs of mutations. We also found that high‐order epistasis was as important as pairwise epistasis in their contribution to fitness. Therefore, results suggest that the landscape was rugged due to the existence of holes caused by lethal genotypes, that a very limited number of potential neutral paths exist and that it contained a single adaptive peak.  相似文献   

11.
The distribution of fitness effects (DFE) of new mutations is a key parameter in determining the course of evolution. This fact has motivated extensive efforts to measure the DFE or to predict it from first principles. However, just as the DFE determines the course of evolution, the evolutionary process itself constrains the DFE. Here, we analyze a simple model of genome evolution in a constant environment in which natural selection drives the population toward a dynamic steady state where beneficial and deleterious substitutions balance. The distribution of fitness effects at this steady state is stable under further evolution and provides a natural null expectation for the DFE in a population that has evolved in a constant environment for a long time. We calculate how the shape of the evolutionarily stable DFE depends on the underlying population genetic parameters. We show that, in the absence of epistasis, the ratio of beneficial to deleterious mutations of a given fitness effect obeys a simple relationship independent of population genetic details. Finally, we analyze how the stable DFE changes in the presence of a simple form of diminishing-returns epistasis.  相似文献   

12.
Mutation-selection balance in a multi-locus system is investigated theoretically, using a modification of Bulmer's infinitesimal model of selection on a normally-distributed quantitative character, taking the number of mutations per individual (n) to represent the character value. The logarithm of the fitness of an individual with n mutations is assumed to be a quadratic, decreasing function of n. The equilibrium properties of infinitely large asexual populations, random-mating populations lacking genetic recombination, and random-mating populations with arbitrary recombination frequencies are investigated. With 'synergistic' epistasis on the scale of log fitness, such that log fitness declines more steeply as n increases, it is shown that equilibrium mean fitness is least for asexual populations. In sexual populations, mean fitness increases with the number of chromosomes and with the map length per chromosome. With 'diminishing returns' epistasis, such that log fitness declines less steeply as n increases, mean fitness behaves in the opposite way. Selection on asexual variants and genes affecting the rate of genetic recombination in random-mating populations was also studied. With synergistic epistasis, zero recombination always appears to be disfavoured, but free recombination is disfavoured when the mutation rate per genome is sufficiently small, leading to evolutionary stability of maps of intermediate length. With synergistic epistasis, an asexual mutant is unlikely to invade a sexual population if the mutation rate per diploid genome greatly exceeds unity. Recombination is selectively disadvantageous when there is diminishing returns epistasis. These results are compared with the results of previous theoretical studies of this problem, and with experimental data.  相似文献   

13.
Lessard S  Kermany AR 《Genetics》2012,190(2):691-707
We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill-Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller's ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination.  相似文献   

14.
Abstract.— Determining the way in which deleterious mutations interact to effect fitness is crucial to numerous areas in evolutionary biology. For example, if each additional mutation leads to a greater decrease in log fitness than the last, termed synergistic epistasis, then sex and recombination provide an advantage because they enable deleterious mutations to be eliminated more efficiently. However, there is a severe shortage of relevant empirical data, especially of the form that can help test mutational explanations for the widespread occurrence of sex. Here, we test for epistasis in the parasitic wasp Nasonia vitripennis , examining the fitness consequences of chemically induced deleterious mutations. We examine two components of fitness, both of which are thought to be important in natural populations of parasitic wasps: longevity and egg production. Our results show synergistic epistasis for longevity, but not for egg production.  相似文献   

15.
Soll SJ  Díaz Arenas C  Lehman N 《Genetics》2007,175(1):267-275
The accumulation of slightly deleterious mutations in populations leads to the buildup of a genetic load and can cause the extinction of populations of small size. Mutation-accumulation experiments have been used to study this process in a wide variety of organisms, yet the exact mutational underpinnings of genetic loads and their fitness consequences remain poorly characterized. Here, we use an abiotic system of RNA populations evolving continuously in vitro to examine the molecular events that can instigate a genetic load. By tracking the fitness decline of ligase ribozyme populations with bottleneck sizes between 100 and 3000 molecules, we detected the appearance and subsequent fixation of both slightly deleterious mutations and advantageous mutations. Smaller populations went extinct in significantly fewer generations than did larger ones, supporting the notion of a mutational meltdown. These data suggest that mutation accumulation was an important evolutionary force in the prebiotic RNA world and that mechanisms such as recombination to ameliorate genetic loads may have been in place early in the history of life.  相似文献   

16.
Hong Gao  Marcus W. Feldman 《Genetics》2009,182(1):251-263
Coinfection in RNA virus populations results in two important phenomena, complementation and recombination. Of the two, complementation has a strong effect on selection against deleterious mutations, as has been confirmed in earlier studies. As complementation delays the purging of less-fit mutations, coinfection may be detrimental to the evolution of a virus population. Here we employ both deterministic modeling and stochastic simulation to explore the mechanisms underlying the interactions between complementation and other evolutionary factors, namely, mutation, selection, and epistasis. We find that strong complementation reduces slightly the overall fitness of a virus population but substantially enhances its diversity and robustness, especially when interacting with selection and epistasis.  相似文献   

17.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   

18.
Recent theoretical studies have illustrated the potential role of spontaneous deleterious mutation as a cause of extinction in small populations. However, these studies have not addressed several genetic issues, which can in principle have a substantial influence on the risk of extinction. These include the presence of synergistic epistasis, which can reduce the rate of mutation accumulation by progressively magnifying the selective effects of mutations, and the occurrence of beneficial mutations, which can offset the effects of previous deleterious mutations. In stochastic simulations of small populations (effective sizes on the order of 100 or less), we show that both synergistic epistasis and the rate of beneficial mutation must be unrealistically high to substantially reduce the risk of extinction due to random fixation of deleterious mutations. However, in analytical calculations based on diffusion theory, we show that in large, outcrossing populations (effective sizes greater than a few hundred), very low levels of beneficial mutation are sufficient to prevent mutational decay. Further simulation results indicate that in populations small enough to be highly vulnerable to mutational decay, variance in deleterious mutational effects reduces the risk of extinction, assuming that the mean deleterious mutational effect is on the order of a few percent or less. We also examine the magnitude of outcrossing that is necessary to liberate a predominantly selfing population from the threat of long-term mutational deterioration. The critical amount of outcrossing appears to be greater than is common in near-obligately selfing plant species, supporting the contention that such species are generally doomed to extinction via random drift of new mutations. Our results support the hypothesis that a long-term effective population size in the neighborhood of a few hundred individuals defines an approximate threshold, below which outcrossing populations are vulnerable to extinction via fixation of deleterious mutations, and above which immunity is acquired.  相似文献   

19.
Beneficial mutations are intuitively relevant to understanding adaptation, yet not all beneficial mutations are of consequence to the long-term evolutionary outcome of adaptation. Many beneficial mutations-mostly those of small effect-are lost due either to (1) genetic drift or to (2) competition among clones carrying different beneficial mutations, a phenomenon called the "Hill-Robertson effect" for sexual populations and "clonal interference" for asexual populations. Competition among clones becomes more prevalent with increasing genetic linkage and increasing population size, and it is thus generally characteristic of microbial populations. Together, these two phenomena suggest that only those beneficial mutations of large fitness effect should achieve fixation, despite the fact that most beneficial mutations produced are predicted to have very small fitness effects. Here, we confirm this prediction-both empirically and theoretically-by showing that fitness effects of fixed beneficial mutations follow a distribution whose mode is positive.  相似文献   

20.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号