首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis.  相似文献   

2.
The high density lipoprotein (HDL) receptor Scavenger Receptor BII (SR-BII) is encoded by an alternatively spliced mRNA from the SR-BI gene and is expressed in various tissues. SR-BII protein differs from SR-BI only in the carboxyl-terminal cytoplasmic tail, which, as we showed previously, must contain a signal that confers predominant intracellular expression and rapid endocytosis of HDL. We have shown that SR-BII mediates HDL endocytosis through aclathrin-dependent, caveolae-independent pathway. Two candidate amino acid motifs were identified in the tail that could mediate association with clathrin-containing endocytic vesicles: a putative dileucine motif at position 492-493 and an overlapping tyrosine-based YXXZ motif starting at position 489. Although substitution of tyrosine at position 489 with alanine or histidine did not affect endocytosis, substitution L492A resulted in increased surface binding of HDL and reduced HDL particle endocytosis. Substitution L493A had a less dramatic effect. No other regions in the carboxyl-terminal tail appeared to contain motifs required for HDL endocytosis. Substitutions of leucine at position 492 with the hydrophobic amino acids valine or phenylalanine also reduced HDL endocytosis, stressing the importance of leucine at this position. Introducing the SR-BII YTPLL motif into the carboxyl-terminal cytoplasmic tail of SR-BI converted SR-BI into an endocytic receptor resembling SR-BII. These results demonstrated that SR-BII differs from SR-BI in subcellular localization and trafficking and suggest that the two isoforms differ in the manner in which they target ligands intracellularly.  相似文献   

3.
The cytoplasmic tail of MPR46 carries a leucine-based motif that is required for the sorting of lysosomal enzymes by the receptor. In addition, it is one of three independent, but functionally redundant, internalization signals present in the cytoplasmic tail of MPR46. We have analyzed a mutant of MPR46, in which the dileucine pair was replaced by alanines (MPR46 LL/AA) with respect to its intracellular distribution and trafficking. Ultrastructural analysis of cells expressing the MPR46 LL/AA mutant revealed that the substitution of the dileucine pair causes a shift of the receptor distribution from the TGN, where it is packaged into AP1-containing vesicles, to vesicular structures distributed throughout the cytoplasm. The vesicles could be identified as early endosomes with internalized BSA-gold and rab5 as markers. By analyzing the receptor trafficking biochemically, we found that return of the LL/AA mutant receptor from the plasma membrane/endosome pool back to the TGN was impaired, while recycling from endosomes to the plasma membrane was enhanced. In conclusion, our data indicate that the dileucine motif in the MPR46 tail is required for a sorting event in endosomes.  相似文献   

4.
Charged residues in the beta2 subunit involved in GABAA receptor activation   总被引:1,自引:0,他引:1  
Fast synaptic inhibition in the mammalian central nervous system is mediated primarily via activation of the gamma-aminobutyric acid type A receptor (GABAA-R). Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state. This transition, known as gating, is thought to be associated with a sequence of conformational changes originating at the agonist-binding site, ultimately resulting in opening of the channel. Using site-directed mutagenesis and several different GABAA-R agonists, we identified a number of highly conserved charged residues in the GABAA-R beta2 subunit that appear to be involved in receptor activation. We then used charge reversal double mutants and disulfide trapping to investigate the interactions between these flexible loops within the beta2 subunit. The results suggest that interactions between an acidic residue in loop 7 (Asp146) and a basic residue in pre-transmembrane domain-1 (Lys215) are involved in coupling agonist binding to channel gating.  相似文献   

5.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   

6.
During the assembly of enveloped viruses viral and cellular components essential for infectious particles must colocalize at specific membrane locations. For the human and simian immunodeficiency viruses (HIV and SIV), sorting of the viral envelope proteins (Env) to assembly sites is directed by trafficking signals located in the cytoplasmic domain of the transmembrane protein gp41 (TM). A membrane proximal conserved GYxx? motif mediates endocytosis through interaction with the clathrin adaptor AP-2. However, experiments with SIV(mac239) Env indicate the presence of additional signals. Here we show that a conserved C-terminal dileucine in HIV(HxB2) also mediates endocytosis. Biochemical and morphological assays demonstrate that the C-terminal dileucine motif mediates internalization as efficiently as the GYxx? motif and that both must be removed to prevent Env internalization. RNAi experiments show that depletion of the clathrin adaptor AP-2 leads to increased plasma membrane expression of HIV Env and that this adaptor is required for efficient internalization mediated by both signals. The redundancy of conserved endocytosis signals and the role of the SIV(mac239) Env GYxx? motif in SIV pathogenesis, suggest that these motifs have functions in addition to endocytosis, possibly related to Env delivery to the site of viral assembly and/or incorporation into budding virions.  相似文献   

7.
8.
We have cloned a novel gamma-aminobutyric acid type A (GABAA) receptor gamma2 subunit variant named gamma2XL. gamma2XL contains an alternatively spliced exon, resulting in the addition of 40 amino acids to the N-terminal extracellular domain between Ser171 and Tyr172. We show that gamma2XL failed to localize to the cell surface when it was coexpressed with the alpha2 and beta1 subunits in human embryonic kidney 293 cells. Expression of gamma2XL in 293 cells suppressed GABAA receptor binding in a dose-dependent manner by preventing GABAA receptor cell-surface localization. We also generated a gamma2 mutant with Ser171 and Tyr172 converted to glycine and threonine, respectively. We demonstrate that this mutant has a significantly lower affinity for the alpha2 and beta1 subunits and failed to reach the cell surface when coexpressed with these subunits. Together, our results indicate that Ser171 and Tyr172 in the gamma2 subunit constitute a critical motif. When this motif is disrupted by insertion of the alternative exon, access of the gamma2 subunit to the cell surface is prevented.  相似文献   

9.
Synaptotagmin is a multifunctional membrane protein that may regulate exo-endocytic cycling of synaptic vesicles at the presynaptic plasmalemma. Its C2B domain has been postulated to interact with a variety of effector molecules including acidic phospholipids, phosphoinositides, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), calcium channels, and the clathrin adaptor complex AP-2. Here we report that a basic motif within the C2B domain is required and sufficient for binding to AP-2 via its mu2 subunit and that this interaction is dependent on multimerization of the AP-2 binding site. Moreover, we show that upon fusion to a plasma membrane reporter protein this sequence is sufficient to target the chimeric molecule for internalization. We hypothesize that basic motifs within multimeric membrane proteins may represent a novel type of clathrin/AP-2-dependent endocytosis signal.  相似文献   

10.
Cloned cDNAs encoding two new beta subunits of the rat and bovine GABAA receptor have been isolated using a degenerate oligonucleotide probe based on a highly conserved peptide sequence in the second transmembrane domain of GABAA receptor subunits. The beta 2 and beta 3 subunits share approximately 72% sequence identity with the previously characterized beta 1 polypeptide. Northern analysis showed that both beta 2 and beta 3 mRNAs are more abundant in the brain than beta 1 mRNA. All three beta subunit encoding cDNAs were also identified in a library constructed from adrenal medulla RNA. Each beta subunit, when co-expressed in Xenopus oocytes with an alpha subunit, forms functional GABAA receptors. These results, together with the known alpha subunit heterogeneity, suggest that a variety of related but functionally distinct GABAA receptor subtypes are generated by different subunit combinations.  相似文献   

11.
The clathrin-coated pit is the major port of entry for many receptors and pathogens and is the paradigm for membrane-based sorting events in higher cells [1]. Recently, it has been possible to reconstitute in vitro the events leading to assembly, invagination, and budding off of clathrin-coated vesicles, allowing dissection of the machinery required for sequestration of receptors into these structures [2-6]. The AP2 adaptor complex is a key element of this machinery linking receptors to the coat lattice, and it has previously been reported that AP2 can be phosphorylated both in vitro and in vivo [7-10]. However, the physiological significance of this has never been established. Here, we show that phosphorylation of a single threonine residue (Thr156) of the mu2 subunit of the AP2 complex is essential for efficient endocytosis of transferrin both in an in vitro coated-pit budding assay and in living cells.  相似文献   

12.
13.
The c-myc oncoprotein plays a critical role in the regulation of cellular proliferation and apoptosis. To mediate these biological functions, a variety of target genes are activated or repressed by c-myc, but few genes have yet been identified that directly mediate c-myc's role in proliferation or apoptosis. During a screen for genes that are repressed by c-myc, we identified the alpha1 subunit of gamma aminobutyric acid receptor (GABAAR-alpha1) as a novel target of c-myc. GABAAR is the major inhibitory neurotransmitter receptor in the mammalian central nervous system and is involved in developmental events in the brain, such as neurite outgrowth, neuronal survival, neuronal migration, and proliferation. We show here that GABAAR-alpha1 expression is rapidly and directly repressed by c-myc. GABAAR-alpha1 expression is elevated in c-myc null cells and upregulation of GABAAR-alpha1 correlates with downregulation of c-myc protein expression during neuronal cell differentiation. We also show that overexpression of GABAAR-alpha1 causes apoptosis, which is blocked by the coexpression of Bcl-2 or Bcl-XL. Induction of apoptosis is specific for the alpha1 subunit, since neither the beta1 or beta2 subunits of GABAAR induced apoptosis. Derepression of GABAAR-alpha1 expression upon downregulation of c-myc represents a unique apoptotic mechanism and a distinct function for the alpha1 subunit, independent of its role as a component of the GABAAR in the plasma membrane. In addition, the regulation of GABAAR-alpha1 expression by c-myc provides a potential direct role for the Myc proteins in neurological processes and neurodegenerative disorders.  相似文献   

14.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. E-cadherin associates with beta-catenin at the membrane-distal region of its cytosolic domain and with p120 at the membrane-proximal region of its cytoplasmic domain. It has been shown that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. Further, p120 knockdown by small interference RNA resulted in dose-dependent elimination of cell surface E-cadherin. Consistent with these observations, we found that selective uncoupling of p120 from E-cadherin by introduction of amino acid substitutions in the p120-binding site increased the level of E-cadherin endocytosis. The increased endocytosis was clathrin-dependent, because it was blocked by expression of a dominant-negative form of dynamin or by hypertonic shock. A dileucine motif in the juxtamembrane cytoplasmic domain is required for E-cadherin endocytosis, because substitution of these residues to alanine resulted in impaired internalization of the protein. The alanine substitutions in the p120-uncoupled construct reduced endocytosis of the protein, indicating that this motif was dominant to p120 binding in the control of E-cadherin endocytosis. Therefore, these results are consistent with the idea that p120 regulates E-cadherin endocytosis by masking the dileucine motif and preventing interactions with adaptor proteins required for internalization.  相似文献   

15.
In spite of the many key cellular functions of chloride channels, the mechanisms that mediate their subcellular localization are largely unknown. ClC-2 is a ubiquitous chloride channel usually localized to the basolateral domain of epithelia that regulates cell volume, ion transport, and acid–base balance; mice knocked out for ClC-2 are blind and sterile. Previous work suggested that CLC-2 is sorted basolaterally by TIFS812LL, a dileucine motif in CLC-2''s C-terminal domain. However, our in silico modeling of ClC-2 suggested that this motif was buried within the channel''s dimerization interface and identified two cytoplasmically exposed dileucine motifs, ESMI623LL and QVVA635LL, as candidate sorting signals. Alanine mutagenesis and trafficking assays support a scenario in which ESMI623LL acts as the authentic basolateral signal of ClC-2. Silencing experiments and yeast three-hybrid assays demonstrated that both ubiquitous (AP-1A) and epithelium-specific (AP-1B) forms of the tetrameric clathrin adaptor AP-1 are capable of carrying out basolateral sorting of ClC-2 through interactions of ESMI623LL with a highly conserved pocket in their γ1-σ1A hemicomplex.  相似文献   

16.
The GABAA receptor has been purified to homogeneity from bovine cerebral cortex. Under stringent conditions of isolation, the GABAA receptor was shown to consist only of alpha (Mr 53 000) and beta (Mr 57 000) subunits. A densitometric scan of SDS-PAGE gels under reducing conditions showed that these subunits were present in a 1:1 ratio. A model of the receptor as a heterologous tetramer alpha 2 beta 2 is proposed. Monoclonal antibodies have been raised to the purified bovine GABAA receptor. One of these antibodies, 1A6, was shown to react with both the alpha and beta subunits of the purified receptor. The subunits were still positive in immunoblots following the removal of the carbohydrate moieties of the respective polypeptides by endoglycosidase F treatment. This antibody has been employed to demonstrate antigenic cross-reactivity between the GABAA receptors of three vertebrate species. It is further proposed that there is partial amino acid sequence homology between the alpha and beta polypeptides and hence that they are derived from a single ancestral gene.  相似文献   

17.
Human epidermal keratinocytes are one of the few cell types that express the beta1B splice variant of the beta1 integrin subunit. Although in transfection experiments beta1B acts as a dominant negative inhibitor of cell adhesion, we found that beta1B was expressed at very low levels in keratinocytes, both in vivo and in culture, and had a predominantly cytoplasmic distribution, concentrated within the endoplasmic reticulum. To examine why beta1B accumulated in the cytoplasm, we prepared chimeras between CD8alpha and the beta1A and beta1B integrin cytoplasmic domains. In transfected HeLa cells, both constructs reached the cell surface but the rate of maturation of the beta1B chimera was considerably retarded relative to beta1A. The beta1B cytoplasmic domain contains two lysine residues that resemble the double lysine motif characteristic of many proteins that are resident within the endoplasmic reticulum. Mutation of each lysine individually to serine had no effect on CD8beta1B maturation, but when both residues were mutated the rate of CD8beta1B maturation increased to that of CD8beta1A. Further analysis of beta1B function in keratinocytes must, therefore, take into account the low abundance of the isoform relative to beta1A and the potential for beta1B to accumulate in the endoplasmic reticulum.  相似文献   

18.
The central region (residues 125-385) of the integrin beta(2) subunit is postulated to adopt an I-domain-like fold (the beta(2)I-domain) and to play a critical role in ligand binding and heterodimer formation. To understand structure-function relationships of this region of beta(2), a homolog-scanning mutagenesis approach, which entails substitution of nonconserved hydrophilic sequences within the beta(2)I-domain with their homologous counterparts of the beta(1)I-domain, has been deployed. This approach is based on the premise that beta(1) and beta(2) are highly homologous, yet recognize different ligands. Altogether, 16 segments were switched to cover the predicted outer surface of the beta(2)I-domain. When these mutant beta(2) subunits were transfected together with wild-type alpha(M) in human 293 cells, all 16 beta(2) mutants were expressed on the cell surface as heterodimers, suggesting that these 16 sequences within the beta(2)I-domain are not critically involved in heterodimer formation between the alpha(M) and beta(2) subunits. Using these mutant alpha(M)beta(2) receptors, we have mapped the epitopes of nine beta(2)I-domain specific mAbs, and found that they all recognized at least two noncontiguous segments within this domain. The requisite spatial proximity among these non-linear sequences to form the mAb epitopes supports a model of an I-domain-like fold for this region. In addition, none of the mutations that abolish the epitopes of the nine function-blocking mAbs, including segment Pro(192)-Glu(197), destroyed ligand binding of the alpha(M)beta(2) receptor, suggesting that these function-blocking mAbs inhibit alpha(M)beta(2) function allosterically. Given the recent reports implicating the segment equivalent to Pro(192)-Glu(197) in ligand binding by beta(3) integrins, these data suggest that ligand binding by the beta(2) integrins occurs via a different mechanism than beta(3). Finally, both the conformation of the beta(2)I-domain and C3bi binding activity of alpha(M)beta(2) were dependent on a high affinity Ca(2+) binding site (K(d) = 105 microm), which is most likely located within this region of beta(2).  相似文献   

19.
beta-Arrestins are multifunctional adaptor proteins known to regulate internalization of agonist-stimulated G protein-coupled receptors by linking them to endocytic proteins such as clathrin and AP-2. Here we describe a previously unappreciated mechanism by which beta-arrestin orchestrates the process of receptor endocytosis through the activation of ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein. Involvement of ARF6 in the endocytic process is demonstrated by the ability of GTP-binding defective and GTP hydrolysis-deficient mutants to inhibit internalization of the beta(2)-adrenergic receptor. The importance of regulation of ARF6 function is shown by the ability of the ARF GTPase-activating protein GIT1 to inhibit and of the ARF nucleotide exchange factor, ARNO, to enhance receptor endocytosis. Endogenous beta-arrestin is found in complex with ARNO. Upon agonist stimulation of the receptor, beta-arrestin also interacts with the GDP-liganded form of ARF6, thereby facilitating ARNO-promoted GTP loading and activation of the G protein. Thus, the agonist-driven formation of a complex including beta-arrestin, ARNO, and ARF6 provides a molecular mechanism that explains how the agonist-stimulated receptor recruits a small G protein necessary for the endocytic process and controls its activation.  相似文献   

20.
The GABAA receptor beta subunit is required to confer sensitivity to gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. In previous studies we demonstrated that the growth and differentiation factor neuregulin 1 (NRG1) selectively induced expression of the beta2 subunit mRNA and encoded protein in rat cerebellar granule neurons in culture. In the present report we examine the signaling pathways that mediate this effect. These studies demonstrate that the effects of NRG1 on beta2 subunit polypeptide expression require activation of the ErbB4 receptor tyrosine kinase; its effects are inhibited by pharmacological blockade of ErbB4 phosphorylation or reduction of receptor level with an antisense oligodeoxynucleotide. The NRG1-induced activation of ErbB4 stimulates the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and cyclin-dependent kinase-5 (cdk5) pathways. Pharmacological blockade of any of these pathways inhibits increased beta2 subunit expression, demonstrating that all three pathways are required to mediate the effects of NRG1 on GABAA receptor subunit expression in cerebellar granule neurons. These studies provide novel information concerning the actions of NRG1 on GABAA receptor expression in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号