首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The macrophage-induced gene (mig) of Mycobacterium avium has been associated with virulence, but the functions of the gene product were still unknown. Here we have characterized the Mig protein by biochemical methods. A plasmid with a histidine-tagged fusion protein was constructed for expression in Escherichia coli. Mig was detected as a 60 kDa protein after expression and purification of the recombinant gene product. The sequence of the fusion gene and of the parent gene in M. avium were reexamined. This confirmed that the mig gene encodes a 550 amino acid protein (58 kDa) instead of a 295 amino acid protein (30 kDa) as predicted before. The 550 amino acid Mig exhibits a high degree of homology to bacterial acyl-CoA synthetases. Two artificial 30 kDa derivatives of Mig were expressed and purified as histidine-tagged fusion proteins in E. coli. These proteins and the 58.6 kDa histidine-tagged Mig protein were analysed for activity with an acyl-CoA synthetase assay. Among the three investigated proteins, only the 58.6 kDa Mig exhibited detectable activity as an acyl-CoA synthetase (EC 6.2.1.3) with saturated medium-chain fatty acids, unsaturated long-chain fatty acid and some aromatic carbon acids as substrates. Enzymatic activity could be inhibited by 2-hydroxydodecanoic acid, a typical inhibitor of medium-chain acyl-CoA synthetases. We postulate a novel medium-chain acyl-CoA synthetase motif. We have investigated the biochemical properties of Mig and suggest that this enzyme is involved in the metabolism of fatty acid during mycobacterial survival in macrophages.  相似文献   

2.
A cDNA clone was isolated from an Arabidopsis leaf cDNA library that shared a high degree of protein sequence identity with mitochondrial acyl carrier proteins (mtACPs) isolated from Neurospora crassa and bovine heart muscle. The cDNA encoded an 88-amino acid mature protein that was preceded by a putative 35-amino acid presequence. In vitro protein import studies have confirmed that the presequence specifically targets this protein into pea mitochondria but not into chloroplasts. These studies indicated that pea mitochondria were not only able to import and process the precursor protein but also possessed the ability to acylate the mature protein. The mitochondrial localization of this protein, mtACP-1, was confirmed by western blot analysis. Arabidopsis mitochondrial protein extracts contained two cross-reacting bands that comigrated with the mature mtACP-1 and acylated mtACP-1 proteins. The acylated form of mtACP-1 was approximately 4 times more abundant than the unacylated form and appeared to be localized predominantly in the mitochondrial membrane where the unacylated mtACP-1 was present mostly in the matrix fraction. A chloroplast fatty acid synthase system was used, and mtACP-1 was able to function as a cofactor for fatty acid synthesis. However, predominantly short- and medium-chain fatty acids were produced in fatty acid synthase reactions supplemented with mtACP-1, suggesting that mtACP-1 may be causing premature fatty acid chain termination.  相似文献   

3.
The cytosol from lactating-rabbit mammary gland contains a medium-chain acyl-thioester hydrolase. This hydrolase terminates chain lengthening of the fatty acids synthesised by fatty acid synthetase so as to release C8:0 and C10:0 fatty acids which are characteristic of rabbit milk. The medium-chain hydrolase and the fatty acid synthetase present in this cytosol have been shown to be immunologically distinct. When fatty acid synthetase was purified from this cytosol it showed unexpected immunological reactivity towards antiserum raised to the medium-chain hydrolase. The precipitate formed was not due to fatty acid synthetase, but to medium-chain hydrolase contaminating the synthetase. However, the proportion of this medium-chain hydrolase which was recovered with the purified synthetase was too small to be detected by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, and was too small to elicit an antibody response in sheep. Immunological techniques have shown that the medium-chain hydrolase appears in rabbit mammary gland between days 17 and 22 of pregnancy. This coincides with the onset of milk-fat synthesis. The medium-chain hydrolase could not be detected in the cytosol from lactating-rabbit liver.  相似文献   

4.
Mitochondrial medium-chain acyl-CoA dehydrogenase is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. We cloned the gene of rat mitochondrial medium-chain acyl-CoA dehydrogenase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 3' of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel Hi-Trap chelating metal affinity column in 88% yield to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase was 4.0 U/mg. Arg256 is a highly conserved amino acid, which may play an important role in enzymatic reaction based on the crystal structure of medium-chain acyl-CoA dehydrogenase. We constructed four mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Arg256 is a very important residue of rat mitochondrial medium-chain acyl-CoA dehydrogenase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial medium-chain acyl-CoA dehydrogenase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of medium-chain acyl-CoA dehydrogenase.  相似文献   

5.
Incubation of stroma preparations from spinach chloroplasts with low concentrations of cerulenin (10 muM) resulted in severe inhibition of fatty acid synthesis but stimulated the release of medium-chain acids in very high proportions (60-70%). Preincubation of these preparations with cerulenin in the absence of substrate exerted no additional effect on subsequent fatty acid synthesis (as measured by incorporation of [14C]acetate into fatty acids) or the pattern of radioactive acids obtained. Acyl-protein, acyl-CoA, free fatty acids and lipids were resolved from each other and analysed for their distribution of 14C-labelled fatty acids. Acyl-protein derived from cerulenin-treated preparations was the only fraction which contained short- and medium-chain acids (C6--C12). The other fractions from both control and cerulenin-treated groups consisted exclusively of C16 and C18 acids. Acyl-protein was purified by gel filtration chromatography and was characterized as acyl-acyl carrier protein.  相似文献   

6.
The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue.  相似文献   

7.
The expression of a plant (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (BTE) cDNA in Escherichia coli results in a very high level of extractable medium-chain-specific hydrolytic activity but causes only a minor accumulation of medium-chain fatty acids. BTE's full impact on the bacterial fatty acid synthase is apparent only after expression in a strain deficient in fatty acid degradation, in which BTE increases the total fatty acid output of the bacterial cultures fourfold. Laurate (12:0), normally a minor fatty acid component of E. coli, becomes predominant, is secreted into the medium, and can accumulate to a level comparable to the total dry weight of the bacteria. Also, large quantities of 12:1, 14:0, and 14:1 are made. At the end of exponential growth, the pathway of saturated fatty acids is almost 100% diverted by BTE to the production of free medium-chain fatty acids, starving the cells for saturated acyl-ACP substrates for lipid biosynthesis. This results in drastic changes in membrane lipid composition from predominantly 16:0 to 18:1. The continued hydrolysis of medium-chain ACPs by the BTE causes the bacterial fatty acid synthase to produce fatty acids even when membrane production has ceased in stationary phase, which shows that the fatty acid synthesis rate can be uncoupled from phospholipid biosynthesis and suggests that acyl-ACP intermediates might normally act as feedback inhibitors for fatty acid synthase. As the fatty acid synthesis is increasingly diverted to medium chains with the onset of stationary phase, the rate of C12 production increases relative to C14 production. This observation is consistent with activity of the BTE on free acyl-ACP pools, as opposed to its interaction with fatty acid synthase-bound substrates.  相似文献   

8.
Human serum albumin (HSA) is an abundant plasma protein that is responsible for the transport of fatty acids. HSA also binds and perturbs the pharmacokinetics of a wide range of drug compounds. Binding studies have revealed significant interactions between fatty acid and drug-binding sites on albumin but high-resolution structural information on ligand binding to the protein has been lacking. We report here a crystallographic study of five HSA-fatty acid complexes formed using saturated medium-chain and long-chain fatty acids (C10:0, C12:0, C14:0, C16:0 and C18:0). A total of seven binding sites that are occupied by all medium-chain and long-chain fatty acids have been identified, although medium-chain fatty acids are found to bind at additional sites on the protein, yielding a total of 11 distinct binding locations. Comparison of the different complexes reveals key similarities and significant differences in the modes of binding, and serves to rationalise much of the biochemical data on fatty acid interactions with albumin. The two principal drug-binding sites, in sub-domains IIA and IIIA, are observed to be occupied by fatty acids and one of them (in IIIA) appears to coincide with a high-affinity long-chain fatty acid binding site.  相似文献   

9.
1. Ruminant mammary-gland fatty acid synthetases can, in contrast with non-ruminant mammary enzymes, synthesize medium-chain fatty acids. 2. Medium-chain fatty acids are only synthesized in the presence of a fatty acid-removing system such as albumin, beta-lactoglobulin or methylated cyclodextrin. 3. The short- and medium-chain fatty acids synthesized were released as acyl-CoA esters from the fatty acid synthetase.  相似文献   

10.
Medium-chain triacylglycerols (MCT) have a potential glycogen-saving effect during exercise due to rapid hydrolysis and oxidation. However, studies comparing intake of carbohydrates (CHO) plus 80-90 g MCT with intake of CHO alone have revealed different results. The present study tested performance after consumption of specific structured triacylglycerol, consisting of a mixture of medium-chain fatty acids and long-chain fatty acids, to prevent the adverse effects observed by MCT (pure medium-chain fatty acids) regarding gastrointestinal distress. Seven well-trained subjects cycled 3 h at 55% of maximum O2 uptake during which they ingested CHO or CHO plus specific structured triacylglycerols. Immediately after the constant-load cycling, the subjects performed a time trial of approximately 50-min duration. Breath and blood samples were obtained regularly during the experiment. Fatty acid composition of plasma triacylglycerols, fatty acids, and phospholipids was determined. Performance was similar after administration of CHO plus specific structured triacylglycerol [medium-, long-, and medium-chain fatty acid (MLM)] compared with CHO (50.0 +/- 1.8 and 50.8 +/- 3.6 min, respectively). No plasma 8:0 was detected in the plasma lipid classes, but the amount of phospholipid fatty acids was significantly higher after CHO+MLM compared with CHO intake. The lacking time trial improvement after intake of medium-chain fatty acids might be due to no available 8:0 in the systemic circulation. A higher level of plasma phospholipid fatty acids in the CHO+MLM compared with the CHO group was probably due to endogenous phospholipid release into chylomicrons.  相似文献   

11.
S Smith  D Pasco    S Nandi 《The Biochemical journal》1983,212(1):155-159
Epithelial cells were isolated from the undifferentiated mammary glands of mature virgin female rats, and their lipogenic characteristics were studied. These cells synthesized predominantly medium-chain fatty acids, albeit at a low rate. In contrast, whole tissue from mammary glands of virgin rats synthesized predominantly long-chain fatty acids at a relatively higher rate, indicating that the lipogenic activity is dominated by the adipocyte component of the gland. Enzyme assays revealed that thioesterase II, the enzyme which regulates production of medium-chain fatty acids by the fatty acid synthetase, was present at a high activity in the undifferentiated mammary epithelial cells of virgin rats. Immunohistochemical studies confirmed this observation and showed that the regulatory enzyme was present exclusively in the epithelial cells lining the alveolar and ductal elements of the undifferentiated gland. This study demonstrates that the potential to elaborate tissue-specific medium-chain fatty acids is already expressed in the undifferentiated tissue of virgin rats and is not acquired as a result of the differentiation associated with the lactogenic phase of development. In this species mammary epithelial cells apparently synthesize predominantly medium-chain fatty acids at all stages of development, and only the overall rate of synthesis is increased on induction of the fatty acid synthetase during lactogenesis.  相似文献   

12.
J Knudsen  S Clark    R Dils 《The Biochemical journal》1976,160(3):683-691
1. An acyl-thioester hydrolase was isolated from the cytosol of lactating-rabbit mammary gland. The purified enzyme terminates fatty acid synthesis at medium-chain (C8:0-C12:0) acids when it is incubated with fatty acid synthetase and rate-limiting concentrations of malonyl-CoA. These acids are characteristic products of the lactating gland. 2. The mol.wt. of the enzyme is 29000+/-500 (mean+/-S.D. of three independent preparations), as estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 3. The enzyme also hydrolyses acyl-CoA esters of chain lengths C10:0-C16:0 when these are used as model substrates. The greatest activity was towards dodecanoyl-CoA, and the three preparations had specific activities of 305, 1130 and 2010 nmol of dodecanoyl-CoA hydrolysed/min per mg of protein when 56muM substrate was used. 4. The way in which this enzyme controls the synthesis of medium-chain fatty acids by fatty acid synthetase is briefly discussed.  相似文献   

13.
pH- and fatty acid-induced conformational changes in human serum albumin were investigated by fluorescence-energy transfer, determining the distance between Trp-214 and bound bilirubin at 25 degrees C. This distance changes significantly with the pH, being 2.52 +/- 0.01 nm at pH 6, 2.31 +/- 0.04 nm at pH 9, 2.13 +/- 0.07 nm at pH 11.0 and 2.77 nm at pH 11.9. The influence of different fatty acids on the distance was also determined. At pH 7.4 medium-chain fatty acids seem to increase this distance, whereas long-chain fatty acids, at low concentrations, decrease the distance between the two chromophores. The contraction of the protein carrying long-chain saturated fatty acids is even more pronounced at pH 9.  相似文献   

14.
Rat milk triacylglycerols contain 35% medium-chain length fatty acids. About 70% of ingested medium-chain fatty acids are released from milk triacylglycerols in the stomach and small intestine and are absorbed directly into the portal venous system. Based on studies with the perfused suckling rat liver and in vivo studies with 2-tetradecylglycidic acid, an inhibitor of long-chain fatty acid oxidation, it is estimated that medium-chain fatty acids provide 75-80% of the substrate for ketogenesis. The preferential use of medium-chain fatty acids for ketogenesis spares long-chain fatty acids for complex lipid and membrane biosynthesis during this period of rapid growth. Although medium-chain fatty acids are the major substrate for ketogenesis, this pathway accounts for only 15% of the utilization of ingested medium-chain fatty acids, the rest presumably being oxidized directly in extrahepatic tissues.  相似文献   

15.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

16.
Analysis of serum free fatty acids by gas-liquid chromatography showed high proportions (27-57%) of octanoic acid for up to 4 hr after the ingestion of a single oral load of medium-chain triglyceride (approximately 1 g/kg body weight) in four volunteers. The effects of a medium-chain triglyceride load on the concentrations of plasma free long-chain fatty acids, plasma glucose, serum insulin, and serum triglyceride were observed and compared with the effects of a glucose load. A rapid fall in the free long-chain fatty acids followed both loads but only a small rise in serum insulin was observed after medium-chain triglyceride. The fall in free long-chain fatty acids following ingestion of medium-chain triglyceride cannot therefore be caused mainly by the release of insulin and may be due to a direct action on adipose tissue. No medium-chain fatty acids were detected in the serum triglyceride after ingestion of medium-chain triglyceride, but there was a small but significant increase in the percentage of hexadecenoic acid in this fraction.  相似文献   

17.
The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.  相似文献   

18.
Arabidopsis thaliana contains a large number of genes that encode carboxylic acid-activating enzymes, including nine long-chain fatty acyl-CoA synthetases, four 4-coumarate:CoA ligases (4CL), and 25 4CL-like proteins of unknown biochemical function. Because of their high structural and sequence similarity with bona fide 4CLs and their highly hydrophobic putative substrate-binding pockets, the 4CL-like proteins At4g05160 and At5g63380 were selected for detailed analysis. Following heterologous expression, the purified proteins were subjected to a large scale screen to identify their preferred in vitro substrates. This study uncovered a significant activity of At4g05160 with medium-chain fatty acids, medium-chain fatty acids carrying a phenyl substitution, long-chain fatty acids, as well as the jasmonic acid precursors 12-oxo-phytodienoic acid and 3-oxo-2-(2'-pentenyl)-cyclopentane-1-hexanoic acid. The closest homolog of At4g05160, namely At5g63380, showed high activity with long-chain fatty acids and 12-oxo-phytodienoic acid, the latter representing the most efficiently converted substrate. By using fluorescent-tagged variants, we demonstrated that both 4CL-like proteins are targeted to leaf peroxisomes. Collectively, these data demonstrate that At4g05160 and At5g63380 have the capacity to contribute to jasmonic acid biosynthesis by initiating the beta-oxidative chain shortening of its precursors.  相似文献   

19.
With the aim of elucidating the mechanisms involved in the biosynthesis of medium-chain fatty acids in Cuphea lanceolata Ait., a crop accumulating up to 90% decanoic acid in seed triacylglycerols, cDNA clones of a beta-ketoacyl-acyl carrier protein (ACP) synthase IV (clKAS IV, EC 2.3.1.41) were isolated from C. lanceolata seed embryos. The amino acid sequence deduced from clKAS IV cDNA showed 80% identity to other plant KAS II-type enzymes, 55% identity towards plant KAS I and over 90% towards other Cuphea KAS IV-type sequences. Recombinant clKAS IV was functionally overexpressed in Escherichia coli, and substrate specificity of purified enzyme showed strong preference for elongation of short-chain and medium-chain acyl-ACPs (C4- to C10-ACP) with nearly equal activity. Further elongation steps were catalysed with distinctly less activity. Moreover, short- and medium-chain acyl-ACPs exerted a chain-length-specific and concentration-dependent substrate inhibition of clKAS IV. Based on these findings a regulatory mechanism for medium-chain fatty acid synthesis in C. lanceolata is presented.  相似文献   

20.
The activity and mRNA concentrations of two lipogenic enzymes, fatty-acid synthase and acetyl-CoA carboxylase were measured in the liver and white adipose tissue of rats weaned to a carbohydrate-rich diet containing either long-chain or medium-chain fatty acids, and compared to those of rats weaned on a diet containing less than 1% (total energy) fat (high-carbohydrate diet). In the liver, the diet containing long-chain fatty acids inhibited the increase of both lipogenic-enzyme mRNA concentrations and activities seen at weaning on the high-carbohydrate diet but did not prevent the decrease in phosphoenolpyruvate carboxykinase mRNA and activity. In contrast, the diet containing medium-chain fatty acids induced a slower but finally similar increase in lipogenic-enzyme mRNA concentrations and activities. In adipose tissue, a similar trend was observed, although the inhibitory effect of the diet containing long-chain fatty acids was considerably less marked than in liver. It is concluded that medium-chain and long-chain fatty acids have not the same inhibitory potency of the gene expression of lipogenic enzymes, and that long-chain fatty acids have a more marked effect in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号