首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Previous studies have indicated that activation of a normally unexpressed beta 1----3-N-acetylglucosaminyltransferase is responsible for the accumulation of a wide diversity of both type 1 and 2 lacto-series antigens in human colonic adenocarcinomas. A beta 1----3-N-acetylglucosaminyltransferase has been solubilized from the human colonic adenocarcinoma cell line SW403 by 0.2% Triton X-100 and some of its properties have been studied. The enzyme was active over a broad pH range from 5.8 to 7.5 and had a strict requirement for Mn2+ as a divalent metal ion. Transfer of N-acetylglucosamine (GlcNAc) to lactosylceramide was optimal when assayed in the presence of a final concentration of Triton CF-54 of 0.3%. Inclusion of CDPcholine in the reaction mixture stimulated the activity by protecting the UDP[14C]GlcNAc from hydrolysis by endogenous enzymes. The kinetic parameters of the enzyme were studied. Km values for acceptors nLc4 and nLc6 were determined to be 0.19 mM for each. However, the Vmax values calculated for these acceptors were 150 and 110 pmol/h/mg protein for nLc4 and nLc6, respectively, suggesting reduced potential for further elongation as the chain length increases. The Km for UDPGlcNAc was determined to be 0.17 mM. Studies of the acceptor specificity have indicated transfer of GlcNAc occurs mainly to type 2 chain nonfucosylated structures. However, elongation of the type 1 chain structure Lc4 was also detected.  相似文献   

2.
Biosynthesis of fucose containing lacto-series glycolipids has been studied in human colonic adenocarcinoma Colo 205 cells. Transfer of fucose in both alpha 1----3 linkage to type 2 chain acceptors and alpha 1----4 linkage to type 1 chain acceptors was demonstrated with a Triton X-100 solubilized membrane fraction. The enzyme was found to be highly active over a broad pH range between 6.0 and 7.5. Kinetics of the transfer reactions were studied and indicated that the enzyme had an apparent Km for GDPfucose of 53 and 49 microM with acceptors nLc4 and Lc4, respectively. The apparent Km values for acceptors Lc4, nLc4, and IV3NeuAcnLc4 were determined to be 42, 18, and 26 microM, respectively. Transfer of fucose to the type 1 chain acceptor Lc4 alone and in the presence of increasing concentrations of the type 2 chain acceptor IV3NeuAcnLc4 or Gb3 suggested that both type 1 and 2 acceptors were alternate acceptors for a single enzyme. This was further established by the finding that IV3NeuAcnLc4 behaved as a competitive inhibitor of fucose transfer with respect to Lc4. Conditions were defined for preparative scale in vitro synthesis of fucosylated products of nLc6 catalyzed by the Colo 205 cell enzyme. Yields of the monofucosyl derivative of 2.5 mg (46%) and 1 mg (17%) of the difucosyl derivative were obtained from 5 mg of original nLc6. The structures of these biosynthetic products were carefully studied by 1H NMR, +FAB-MS, and methylation analysis. These studies revealed extremely high purity products composed of III3FucnLc6 and III3V3Fuc2nLc6. The significance of the nature of these products and enzymatic properties is discussed.  相似文献   

3.
Lacto-series glycolipids, comprising two isomeric types distinguished as type 1 or 2 based upon the linkage of the terminal galactose of the chains, form the basis for a diversity of cell surface antigens expressed on cells. Experimentally, type 2 chain precursors are generally more abundant in tissues for extractive purposes to yield rather large quantities of material compared to the type 1 chain structures. Conditions have been defined for in vitro conversion of terminal Gal beta 1----4GlcNAc linkages of type 2 chain precursors to yield type 1 lacto-series chain based terminal Gal beta 1----3GlcNAc structures in 5- to 10-mg amounts or higher. The terminal galactose of underivatized type 2 chain structures is removed by hydrolysis with jack bean beta-galactosidase followed by transfer of galactose in beta 1----3 linkage catalyzed by a beta 1----3-galactosyltransferase from human colonic adenocarcinoma Colo 205 cells which was first depleted of beta 1----4-galactosyltransferase by chromatography on alpha-lactalbumin-Sepharose. Scaled-up reaction mixtures provided a final yield of product after isolation of about 90% from the immediate Lc3Cer precursor in the 5-mg product range. The biosynthetic product was subjected to extensive chemical analysis by 1H NMR and mass spectrometric methods. These results indicated the presence of a high purity terminal Gal beta 1----3-linked product. The amount of material was sufficient for nondestructive characterization by 2-D NMR, with subsequent confirmation of structure by +FAB-MS and methylation analysis by GC-MS. The results indicate an effective means to rapidly generate lacto-series type 1 precursors in vitro as a superior alternative to direct tissue extractive procedures.  相似文献   

4.
Human colonic adenocarcinoma tissue and derived cell lines have been characterized by an abundance of different type 1 and 2 lacto series glycolipid antigens which are either low or not found in normal colonic mucosa. The enzymatic basis for the expression of contrasting glycolipid compositions between adenocarcinomas and normal colonic mucosa, as well as between derived cell lines, has been studied. The following results were of particular interest. (i) Abundant activities of beta 1----4galactosyltransferase associated with synthesis of both lactosylceramide and lactoneotetraosylceramide, beta 1----3galactosyltransferase for synthesis of lactotetraosylceramide, and an alpha 1----3/4fucosyltransferase responsible for synthesis of Lex and Lea antigens were found in normal colonic mucosa or in a normal mucosal epithelial cell line HCMC, or in both. Variable levels of these activities were found in adenocarcinoma tissues and in various established adenocarcinoma cell lines. In striking contrast, significant activity of a beta 1----3N-acetylglucosaminyltransferase responsible for synthesis of lactotriaosylceramide (Lc3) was found in various cases of colonic adenocarcinoma and cell lines, but was undetectable in normal colonic epithelial cells. (ii) In situ transfer of galactose to Lc3 was performed on histologic sections by preincubation of the tissue with acceptor glycolipid followed by incubation with UDP-galactose. The biosynthesized glycolipid was revealed by indirect immunofluorescence with the monoclonal antibody 1B2 which defines lactoneotetraosylceramide antigen. In these studies, histologic sections prepared from frozen normal proximal colon tissue were shown to lack native type 2 chain structures. However, transfer of galactose from UDP-galactose could be demonstrated in the epithelial cells of normal proximal colon after incorporation of Lc3 into the membranes, indicating the ability of normal colonic epithelial cells to synthesize type 2 chain core structures if the precursor Lc3 is available. In contrast, adenocarcinoma tissues showed significant native immunofluorescence with the antibody. These data suggest that an accumulation of both type 1 and 2 chain lacto series glycolipids with alpha 1----3- or alpha 1----4fucosyl substitution in human adenocarcinoma is due to enhanced beta 1----3N-acetylglucosaminyltransferase rather than enhancement of other enzymes. This enzyme may play a key role in regulating the level of various types of lacto series tumor-associated antigens with the lacto type 1 or 2 chain.  相似文献   

5.
Transient expression of a human colonic adenocarcinoma Colo 205 cell derived cDNA in cell lines which ordinarily express only neolacto-series glycolipids has resulted in the expression of a beta 1 --> 3galactosyltransferase gene responsible for synthesis of glycolipids based upon the lacto-series type 1 core chain. Calcium phosphate transfected cells were panned on anti-IgM coated plates after initial treatment with a combination of monoclonal antibodies specific for type 1 chain terminal structures (TE-3) and a very broadly specific antibody reactive with multiple type 1 chain derivatives (TE-2). Adherent cells after panning were capable of efficiently transferring Gal in beta 1 --> 3-linkage to the acceptor glycolipid Lc3. Using these reagents, clones of stably transfected human colonic adenocarcinoma HCT-15 cells were produced and isolated. Parental HCT-15 cells do not express type 1 chain based antigens. The nature of the type 1 chain based antigens produced in each of these clones was analyzed by solid phase antibody binding assays. Three types of behavior were observed. Formation of type 1 terminal structures that were either exclusively sialylated or fucosylated, or a mixture of sialylated and fucosylated determinants occurred. In contrast, no difference in type 2 antigen expression between any clone and the parental cells was observed. These data suggest that coordination of subsequent reactions capable of modifying type 1 chain structures is not the same in all clones. The relationship of these results to aspects of cellular regulation of carbohydrate biosynthesis is discussed.  相似文献   

6.
Murine monoclonal antibodies, TE-1 and TE-3, generated by immunization with a biosynthetic reaction product containing a terminal Gal beta 1----3GlcNAc structure have been produced and found to react specifically with underivatized type 1 chain lacto-series carbohydrate structures. Detailed analysis of these antibodies, both IgM, indicates two differing classes of epitope specificity. Antibody TE-1 was found to bind preferentially to longer chain carbohydrate structures containing a terminal Gal beta 1----3GlcNAc disaccharide, indicating that optimal antibody binding involved more than recognition of this disaccharide. In contrast, antibody TE-3 was found to bind strongly carbohydrate structures containing terminal Gal beta 1----3GlcNAc structures irrespective of chain length. Modification of core chain structures by addition of fucose and/or sialic acid residues completely abolished antibody binding with either antibody. TLC immunostaining of neutral glycolipids isolated from a variety of human colonic adenocarcinoma cell lines indicated intensely stained bands, particularly with antibody TE-3, which correlated with the level of expression of type 1 chain based glycolipid derivatives. These antibodies are applied to the detailed study of the regulation of synthesis of lacto-series type 1 chain based carbohydrate structures.  相似文献   

7.
A series of murine monoclonal antibodies, each reactive with terminal GlcNAc residues expressed on glycolipids, have been isolated after immunization with the glycolipid nLc5 (GlcNAc beta 1----3Gal beta 1----4GlcNAc beta 1----3Gal beta 1---- 4Glc beta 1----1Cer). The derived antibodies, designated TE-4, TE-5, TE-6, and TE-7, were tested for binding specificity with a variety of terminal GlcNAc-containing oligosaccharides expressed on glycolipids and glycoproteins. Antibody TE-4 was found to be reactive only with linear and branched terminal GlcNAc beta 1----3Gal containing structures present in lacto-series carbohydrates irrespective of core chain length. The binding specificity of TE-7 was similar except that no reactivity was observed with the short chain structure Lc3 and was weakly reactive with branched agalacto-I structures, suggesting a longer recognition epitope than for the TE-4 antibody. Antibodies TE-5 and TE-6 reacted with terminal GlcNAc beta 1----3Gal structures and as well GlcNAc beta 1----2(6)Man structures present on BSA-oligosaccharide conjugates. Weak binding was also observed with GlcNAc beta 1----6Gal structures with these antibodies. TE-5 was found to be particularly sensitive to low amounts of terminal GlcNAc-containing glycolipids in both solid phase assays and in TLC-immunostaining studies of neutral glycolipids extracted from colonic adenocarcinoma cell lines and tumors. No reactivity was observed with internal GlcNAc residues with any antibody tested. The panel of antibodies was applied to studies of binding to Triton X-100-solubilized fractions from normal mucosal and adenocarcinoma cell lines after desialylation and Smith degradation to expose terminal GlcNAc residues on glycoproteins and glycolipids. Binding of antibodies TE-4 and TE-7 was restricted to adenocarcinoma-derived cell fractions. Application of these antibodies in studies of lacto-series core chain synthesis and in immunodiagnostic procedures after initial treatments to concentrate lacto-series antigens into terminal GlcNAc-containing structures is discussed.  相似文献   

8.
The mechanism of expression of a series of glycolipid antigens carrying the Lex determinant structure, Gal beta 1----4[Fuc alpha 1----3]GlcNAc beta 1----, and characterized by oncofetal expression in fetal colon and colonic adenocarcinomas has been studied in human fetal and adult proximal colon tissue. Results presented from TLC immunostain analysis of neutral glycolipids isolated from normal adult colonic mucosa have indicated the presence of only barely detectable quantities of both an Lex-active glycolipid that co-migrated with III3V3Fuc2nLc6 and its precursor nLc6. These structures were found in large quantities in glycolipid fractions from human adenocarcinoma tumors and human small cell lung carcinoma NCI-H69 cells. In contrast, type 1 chain-based Lea antigen structures were found in both normal mucosa and adenocarcinomas. Analysis of gangliosides of normal colonic mucosa by TLC immunostain indicated the presence of a series of type 2 chain-based gangliosides; however, sialyl-Lex was not detected. The ability of normal colonic mucosa to synthesize type 2 chain core structures was demonstrated by the presence of a beta 1----4 galactosyltransferase activity with Lc3 as an acceptor in an amount equivalent to 60-65% of the total galactosyltransferase activity. An alpha 1----3 fucosyltransferase was also found to be expressed in significant quantity in adult colonic mucosa. Kinetic studies indicated that this is most probably the alpha 1----3/4 fucosyltransferase suggested to be a product of the Lewis gene (Le). Thus, although normal adult colonic mucosa contained the enzymes to synthesize Lex and sialyl-Lex structures, these antigens were not found. Tissue immunofluorescence studies indicated that type 2 chain precursors and the alpha 1----3/4 fucosyltransferase were found in different cell populations in adult proximal colonic mucosa. However, both type 2 chain core structures and their fucosylated derivatives were found to be associated with epithelial cells of fetal colon. These results indicate that oncofetal expression of Lex antigens in fetal colonic epithelium and in adenocarcinomas but not in normal adult mucosa is due to the retrogenetic expression of type 2 chain precursors which are not found in normal adult colonic epithelial cells.  相似文献   

9.
A UDP-Gal:Gal beta 1----4GlcNAc-R alpha 1----3- and a UDP-Gal:GlcNAc-R beta 1----4-galactosyltransferase have been purified 44,000- and 101,000-fold, respectively, from a Triton X-100 extract of calf thymus by affinity chromatography on UDP-hexanolamine-Sepharose and alpha-lactalbumin-Sepharose in a yield of 25-40%. Sodium dodecyl sulfate gel electrophoresis under reducing conditions revealed a major polypeptide species with a molecular weight of 40,000 and a minor form at Mr 42,000 for the alpha 1----3-galactosyltransferase and a major polypeptide with Mr 51,000 for the beta 1----4-galactosyltransferase. Analytical gel filtration on Sephadex G-100 yielded a monomeric form for each of the galactosyltransferases with Mr 43,000 and 59,000 respectively, in addition to peaks of activity at higher molecular weights. Isoelectric focussing of the alpha 1----3-galactosyltransferase revealed a significant charge heterogeneity with forms varying in pI values between 5.0 and 6.5. Acceptor specificity studies indicated that the purified alpha 1----3-galactosyltransferase was free from contaminating galactosyltransferase activities such as those involved in the synthesis of Gal beta 1----4GlcNAc-R and Gal beta 1----3GalNAc-R sequences, the blood group B determinant, the Pk antigen, trihexosylceramide, and ganglioside GM1. The alpha 1----3-galactosyltransferase appeared to be highly active with glycoproteins, oligosaccharides, and glycolipids having a terminal Gal beta 1----4GlcNAc beta 1----unit such as asialo-alpha 1-acid glycoprotein (Km = 1.25 mM), Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3Man beta 1----4GlcNAc (Km = 0.57 mM), and paragloboside. The action of the alpha 1----3-galactosyltransferase was found to be mutually exclusive with that of the NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase from bovine colostrum. In addition alpha 1----3-fucosylation of the N-acetylglucosamine residue in the preferred disaccharide acceptor structure completely blocked galactosylation of the alpha 1----3-galactosyltransferase.  相似文献   

10.
Novikoff ascites tumor cells contain a UDP-GlcNAc:beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase B) that acts on galactosides and N-acetylgalactosaminides in which the accepting sugar is beta 1----3 substituted by a Gal or GlcNAc residue. Characterization of enzyme products by 1H-NMR and methylation analysis indicates that an R beta 1----3(GlcNAc beta 1----6)Gal- branching point is formed such as occurs in blood-group-I-active substances. The enzyme does not show an absolute divalent cation requirement and 20 mM EDTA is not inhibitory. The activity is strongly inhibited by Triton X-100 at concentrations of greater than or equal to 0.2%. Competition studies suggest that a single enzyme acts on Gal beta 1----3Gal beta 1----4Glc, GlcNAc beta 1----3Gal beta 1----4GlcNAc and GlcNAc beta 1----3GalNAc alpha-O-benzyl (Km values 0.71, 0.83 and 0.53 mM, respectively). Gal beta----3Gal beta 1----4Glc as an acceptor substrate for beta 6-GlcNAc-transferase B does not inhibit the incorporation of GlcNAc in beta 1----6 linkage to the terminal Gal residues of asialo-alpha 1-acid glycoprotein catalyzed by a beta-galactoside beta 1----6-N-acetylglucosaminyltransferase (beta 6-GlcNAc-transferase A) previously described in Novikoff ascites tumor cells [D. H. Van den Eijnden, H. Winterwerp, P. Smeeman & W.E.C.M. Schiphorst (1983) J. Biol. Chem. 258, 3435-3437]. Neither is Triton X-100 at a concentration of 0.8% inhibitory for the activity of beta 6-GlcNAc-transferase A. This activity is absent from hog gastric mucosa microsomes, which has been described to contain high levels of beta 6-GlcNAc-transferase B. [F. Piller, J. P. Cartron, A. Maranduba, A. Veyrières, Y. Leroy & B. Fournet (1984) J. Biol. Chem. 259, 13,385-13,390]. Our results show that Novikoff tumor cells contain two beta-galactoside beta 6-GlcNAc-transferases, which differ in acceptor specificity and tolerance towards Triton X-100. A role for these enzymes in the synthesis of branched polylactosaminoglycans and of O-linked oligosaccharide core structures having blood-group I activity is proposed.  相似文献   

11.
Retinoic acid induced differentiation of TERA-2-derived human embryonal carcinoma cells is accompanied by a dramatic reduction of extended globo-series glycolipids, including galactosyl globoside, sialylgalactosyl globoside, and globo-A antigen (each recognized by specific MoAbs). Associated with these glycolipid changes, the activities of two key enzymes, alpha 1----4 galactosyltransferase (for synthesis of globotriaosyl core structure) and beta 1----3 galactosyltransferase (for synthesis of galactosyl globoside), were found to be reduced 3- to 4-fold. The latter enzyme plays a key role in the synthesis of extended globo-series structures, and its characterization has not been reported previously. Therefore, its catalytic activity was studied in detail, including substrate specificity, detergent and phospholipid effects, pH and cation requirements, and apparent Km. During retinoic acid induced differentiation, a series of Lex glycolipid antigens (recognized by anti-SSEA-1 antibody) and their core structures (lacto-series type 2 chains) increase dramatically. In parallel with these changes in glycolipid expression, the activities of two key enzymes, beta 1----3 N-acetylglucosaminyltransferase (for extension of lacto-series type 2 chain) and alpha 1----3 fucosyltransferase (for synthesis of Lex structure), were found to increase by 4- and 2-fold, respectively. Similarly, an increase in the expression of several gangliosides (e.g., GD3 and GT3) during retinoic acid induced differentiation was mirrored by a 4-fold increase in the activity of alpha 2----3 sialyltransferase (for synthesis of ganglio core structure, GM3). The results suggest a coordinate regulation of key glycosyltransferases involved in core structure assembly and terminal chain modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
N-Acetylglucosaminide beta 1----4 galactosyltransferase was chromatographically purified about 1,700-fold from F9 embryonal carcinoma cells after solubilization with Triton X-100, using N-acetylglucosamine as the acceptor. As the last step of the purification, affinity chromatography was performed either on N-acetylglucosamine-Sepharose or on alpha-lactalbumin-Sepharose: in both cases, two protein bands with molecular weights of around 68,000 and 59,000 were detected by SDS-polyacrylamide gel electrophoresis of the purified preparations. The enzymological properties including behavior toward alpha-lactalbumin were very similar to those of the enzyme from other sources. The specificity of the enzyme was confirmed by determining the structure of the product; it was mostly Gal beta 1----4GlcNAc. beta-Galactosidase-treated embryoglycan (poly-N-acetyllactosamine) and asialo-agalactofetuin could serve as acceptors with the purified enzyme. Thus, the embryonic enzyme, apparently involved in the synthesis of poly-N-acetyllactosamines, has properties similar in several respects to those of the beta-galactosyltransferases so far studied.  相似文献   

13.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

14.
A CMP-NeuAc:Gal beta 1----3GalNAc-R alpha 2----3-sialyltransferase has been purified over 20,000-fold from a Triton X-100 extract of human placenta by affinity chromatography on concanavalin A-Sepharose and CDP-hexanolamine-Sepharose in a yield of 10%. Sodium dodecyl sulfate-gel electrophoresis under reducing conditions revealed that the enzyme consists of a major polypeptide species with a molecular weight of 41,000 and some minor forms with molecular weights of 40,000, 43,000, and 65,000, respectively, which can be resolved partially by gel filtration on Sephadex G-100. Isoelectric focusing revealed that the enzyme occurs in a major and a minor charged form with pI values of 5.0-5.5 and 6.0, respectively. Acceptor specificity studies indicated that the enzyme catalyzes the incorporation of sialic acid from CMP-NeuAc into glycoproteins, glycolipids, and oligosaccharides which possess a terminal Gal beta----3GalNAc unit. Analysis of the structure of the product chain by high-pressure liquid chromatography and thin layer chromatography as well as methylation analysis revealed that a NeuAc alpha 2----3Gal beta 1----3GalNAc sequence is elaborated. The best glycoprotein acceptors are antifreeze glycoprotein and porcine submaxillary asialo/afucomucin. The disaccharide Gal beta 1----3GalNAc-Thr shows values for Km and V which are close to those of the latter glycoprotein. Lactose as well as oligosaccharides in which galactose is linked beta 1----3 or beta 1----4 to N-acetylglucosamine are less efficient acceptors. Of the glycolipids tested only gangliosides GM1 and GD1b served as an acceptor. The enzyme does not show an absolute aglycon specificity, and attaches sialic acid regardless the anomeric configuration of the N-acetylgalactosaminyl residue in the accepting Gal beta 1----3GalNAc unit. By use of specific acceptor substrates it could be demonstrated that the purified enzyme is free from other known sialyltransferase activities. Studies with rabbit antibodies raised against a partially purified sialyltransferase preparation indicated that the enzyme is immunologically unrelated to a Gal beta 1----4GlcNAc-R alpha 2----3-sialyltransferase, which previously had been identified in human placenta (Van den Eijnden, D.H., and Schiphorst, W. E. C. M. (1981) J. Biol. Chem. 256, 3159-3162). Initial-rate kinetic studies suggest that the sialyltransferase operates through a mechanism involving a ternary complex of enzyme, sugar donor, and acceptor. This is the first report on the extensive purification and characterization of a sialyltransferase from a human tissue.  相似文献   

15.
The distinction between the different classes of glycolipids is conditioned by the action of specific core transferases. The entry point for lacto-series glycolipids is catalyzed by the beta1,3 N-acetylglucosaminyltransferase GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (Lc3) synthase enzyme. The Lc3 synthase activity has been shown to be regulated during development, especially during brain morphogenesis. Here, we report the molecular cloning of a mouse gene encoding an Lc3 synthase enzyme. The mouse cDNA included an open reading frame of 1131 base pairs encoding a protein of 376 amino acids. The Lc3 synthase protein shared several structural motifs previously identified in the members of the beta1,3 glycosyltransferase superfamily. The Lc3 synthase enzyme efficiently utilized the lactosyl ceramide glycolipid acceptor. The identity of the reaction products of Lc3 synthase-transfected CHOP2/1 cells was confirmed by thin-layer chromatography immunostaining using antibodies TE-8 and 1B2 that recognize Lc3 and Gal(beta1,4)GlcNAc(beta1,3)Gal(beta1,4)Glc-ceramide (nLc4) structures, respectively. In addition to the initiating activity for lacto-chain synthesis, the Lc3 synthase could extend the terminal N-acetyllactosamine unit of nLc4 and also had a broad specificity for gangliosides GA1, GM1, and GD1b to generate neolacto-ganglio hybrid structures. The mouse Lc3 synthase gene was mainly expressed during embryonic development. In situ hybridization analysis revealed that that the Lc3 synthase was expressed in most tissues at embryonic day 11 with elevated expression in the developing central nervous system. Postnatally, the expression was restricted to splenic B-cells, the placenta, and cerebellar Purkinje cells where it colocalized with HNK-1 reactivity. These data support a key role for the Lc3 synthase in regulating neolacto-series glycolipid synthesis during embryonic development.  相似文献   

16.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

17.
Rat intestinal UDPgalactose: N-acetylglucosaminyl(beta 1----4)galactosyltransferase activity was studied as to its intestinal and villus-to-crypt distribution, and then purified and characterized. Rapid UDPgalactose hydrolysis was noted in the duodenum and jejunum; little to no breakdown was detected in the distal ileum, cecum and proximal colon. Product analysis suggested that UDPgalactose hydrolysis was due to nucleotide-sugar pyrophosphatase and galactose-1-phosphate phosphatase activities; ileum appeared to have little of the first activity and none of the latter. An aboral gradient of galactosyltransferase activity was noted, activity being 3-4-fold higher in the ileum, cecum and proximal colon. Total homogenate exogenous acceptor galactosyltransferase activities showed no villus-crypt differences but activity measured with intact isolated cells demonstrated higher activity with crypt cells; this was particularly evident in the ileum. Galactosyltransferase activity was purified from ileal-colonic mucosa. An over 4000-fold purification with 75 percent yield was achieved. Only one band of approx. 70-75 kDa was noted on sodium dodecyl sulfate polyacrylamide electrophoresis. As with other eukaryotic galactosyltransferase activities, there was an absolute requirement for Mn2+; the concentration required for half maximal activity was only 2.5 microM and higher concentrations did not inhibit. The Km for UDPgalactose was 30 microM.  相似文献   

18.
1. Sialyl- and galactosyl-transferase activities were determined in wild type and conA-resistant L6 rat myoblasts with substrates derived from fetuin, alpha 1-acid glycoprotein and bovine submaxillary mucin; fetuin was the best acceptor for both enzyme activities, whereas the mucin did not act as an acceptor. 2. The optimum pH for sialyltransferase was 6.6 in both cell lines. 3. The optimum pH for galactosyltransferase in the wild type cell line was 6.2 which was slightly higher than the value of 5.8 found for the conA-resistant cells. 4. Values for Km for both enzyme activities increased five to ten-fold in the variant cell line with both acceptors. 5. The main sialyltransferase activity was the Gal beta 1----4GlcNAc alpha 2----3sialyltransferase for N-linked chains. The galactosyltransferase was most likely the enzyme that is responsible for the synthesis of the Gal beta 1----4GlcNAc structure.  相似文献   

19.
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.  相似文献   

20.
Glycolipid extracts from various human cancer tissues and cell lines showed the presence of a slow-migrating glycolipid component which was strongly reactive with monoclonal antibody (mAb) NCC-ST-421 (raised against human gastric adenocarcinoma) and weakly cross-reactive with anti-Lea mAbs. The slow-migrating glycolipid was isolated from human colonic adenocarcinoma cell line Colo205 grown in nude mice, and was purified by high-performance liquid chromatography followed by preparative thin-layer chromatography. Its structure was elucidated by sequential enzymatic degradation and thin-layer chromatography immunostaining of the degradation products with various mAbs, 1H NMR spectroscopy, positive-ion fast atom bombardment mass spectrometry, and methylation analysis. The major slow-migrating component reacting with mAb ST-421 was identified as dimeric Lea, with the structure as follows. [formula: see text] Antigens containing this structure and various analogous structures (including enzymatically synthesized Lea/Lex hybrid antigen) were tested with ST-421. While the mAb was equally reactive with dimeric Lea and Lea/Lex, only the former was chemically detectable as the slow-migrating glycolipid from the tumor extract. ST-421 showed less reactivity with simple Lea (III4FucLc4) or extended Lea (V4FucLc6, and/or IV3Gal beta 1----3[Fuc alpha 1----4]GlcNAcnLc4), and was not reactive with Lex/Lex (dimeric Lex). It was concluded, therefore, that the major tumor-associated slow-migrating glycolipid reacting with ST-421 has the dimeric Lea structure shown above. Since extension of lacto-series structure has been shown to be limited to type 2 chain in normal cells and tissues, extended elongation of type 1 chain as shown in this structure represents a novel tumor-associated epitope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号