首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1.  Some types of flexible foraging behaviours were incorporated into ecological thought in the 1960s, but the population dynamical consequences of such behaviours are still poorly understood.
2.  Flexible foraging-related traits can be classified as shifts in general and specific foraging effort, and shifts in general and specific defense.
3.  Many flexible foraging behaviours suggested by theory have received very little empirical attention, and empirical techniques used to compare the magnitudes of behavioural and non-behavioural responses to predation are likely to have overestimated the behavioural components.
4.  Adaptively flexible foraging in theory causes significant changes in the forms of consumer functional responses and generates a variety of indirect interactions. These can alter fundamental ecological processes, such as co-existence of competitors, and top-down or bottom-up effects in food webs.
5.  Many aspects of flexible foraging are still largely unknown, including the issues of how to represent the dynamics of such phenotypically plastic traits, how flexible traits in multiple species interact, what types of adaptive movements occur in metacommunities, and how adaptive behaviours influence evolutionary change.
6.  Population dynamics in large food webs may be less dependent on behavioural flexibility than in small webs because species replacement may preempt some potential types of behavioural change within species.  相似文献   

2.
Body-size structure of food webs and adaptive foraging of consumers are two of the dominant concepts of our understanding how natural ecosystems maintain their stability and diversity. The interplay of these two processes, however, is a critically important yet unresolved issue. To fill this gap in our knowledge of ecosystem stability, we investigate dynamic random and niche model food webs to evaluate the proportion of persistent species. We show that stronger body-size structures and faster adaptation stabilise these food webs. Body-size structures yield stabilising configurations of interaction strength distributions across food webs, and adaptive foraging emphasises links to resources closer to the base. Moreover, both mechanisms combined have a cumulative effect. Most importantly, unstructured random webs evolve via adaptive foraging into stable size-structured food webs. This offers a mechanistic explanation of how size structure adaptively emerges in complex food webs, thus building a novel bridge between these two important stabilising mechanisms.  相似文献   

3.
4.
Food web structure in riverine landscapes   总被引:7,自引:0,他引:7  
1. Most research on freshwater (and other) food webs has focused on apparently discrete communities, in well-defined habitats at small spatial and temporal scales, whereas in reality food webs are embedded in complex landscapes, such as river corridors. Food web linkages across such landscapes may be crucial for ecological pattern and process, however. Here, we consider the importance of large scale influences upon lotic food webs across the three spatial dimensions and through time.
2. We assess the roles of biotic factors (e.g. predation, competition) and physical habitat features (e.g. geology, land-use, habitat fragmentation) in moulding food web structure at the landscape scale. As examples, external subsidies to lotic communities of nutrients, detritus and prey vary along the river corridor, and food web links are made and broken across the land–water interface with the rise and fall of the flood.
3. We identify several avenues of potentially fruitful research, particularly the need to quantify energy flow and population dynamics. Stoichiometric analysis of changes in C : N : P nutrient ratios over large spatial gradients (e.g. from river source to mouth, in forested versus agricultural catchments), offers a novel method of uniting energy flow and population dynamics to provide a more holistic view of riverine food webs from a landscape perspective. Macroecological approaches can be used to examine large-scale patterns in riverine food webs (e.g. trophic rank and species–area relationships). New multivariate statistical techniques can be used to examine community responses to environmental gradients and to assign traits to individual species (e.g. body-size, functional feeding group), to unravel the organisation and trophic structure of riverine food webs.  相似文献   

5.
Although pollinators can play a central role in determining the structure and stability of plant communities, little is known about how their adaptive foraging behaviours at the individual level, e.g. flower constancy, structure these interactions. Here, we construct a mathematical model that integrates individual adaptive foraging behaviour and population dynamics of a community consisting of two plant species and a pollinator species. We find that adaptive foraging at the individual level, as a complementary mechanism to adaptive foraging at the species level, can further enhance the coexistence of plant species through niche partitioning between conspecific pollinators. The stabilizing effect is stronger than that of unbiased generalists when there is also strong competition between plant species over other resources, but less so than that of multiple specialist species. This suggests that adaptive foraging in mutualistic interactions can have a very different impact on the plant community structure from that in predator–prey interactions. In addition, the adaptive behaviour of individual pollinators may cause a sharp regime shift for invading plant species. These results indicate the importance of integrating individual adaptive behaviour and population dynamics for the conservation of native plant communities.  相似文献   

6.
The relationship between food web complexity and stability has been the subject of a long-standing debate in ecology. Although rapid changes in the food web structure through adaptive foraging behavior can confer stability to complex food webs, as reported by Kondoh (Science 299:1388–1391, 2003), the exact mechanisms behind this adaptation have not been specified in previous studies; thus, the applicability of such predictions to real ecosystems remains unclear. One mechanism of adaptive foraging is evolutionary change in genetically determined prey use. We constructed individual-based models of evolution of prey use by predators assuming explicit population genetics processes, and examined how this evolution affects the stability (i.e., the proportion of species that persist) of the food web and whether the complexity of the food web increased the stability of the prey–predator system. The analysis showed that the stability of food webs decreased with increasing complexity regardless of evolution of prey use by predators. The effects of evolution on stability differed depending on the assumptions made regarding genetic control of prey use. The probabilities of species extinctions were associated with the establishment or loss of trophic interactions via evolution of the predator, indicating a clear link between structural changes in the food web and community stability.  相似文献   

7.
Recent studies into community level dynamics are revealing processes and patterns that underpin the biodiversity and complexity of natural ecosystems. Theoretical food webs have suggested that species‐rich and highly complex communities are inherently unstable, but incorporating certain characteristics of empirical communities, such as allometric body size scaling and non‐random interaction distributions, have been shown to enhance stability and facilitate species coexistence. Incorporating individual level traits and variability into food web theory is seen as a future pathway for this research and our growing knowledge of individual behaviours, in the form of temperament (or personality) traits, can inform the direction of this research. Temperament traits are consistent differences in behaviour between individuals, which are repeatable across time and/or across ecological contexts, such as aggressive or boldness behaviours that commonly differ between individuals of the same species. These traits, under the framework of behavioural reaction norms, show both individual consistency as well as contextual and phenotypic plasticity. This is likely to contribute significantly to the effects of individual trait variability and adaptive trophic behaviour on the structure and dynamics of food webs, which are apparently stabilizing. Exploring the role of temperament in the context of community ecology is a unique opportunity for cross‐pollination between ecological fields, and can provide new insights into community stability and biodiversity.  相似文献   

8.
Abstract. 1. Individually foraging desert ants, Cataglyphis bicolor , exhibit short foraging lives (half lifetime, i.e. half-time of the exponential decay function: 4.5 days), in which they perform 3.7 ± 1.9 foraging runs per day.
2. During their short lifetime foraging period the ants increase the duration of their foraging round trips (up to 40.0 ± 24.6 min per run), the maximal distance of individual foraging runs (up to 28.2 ± 4.1 m), and their foraging success, i.e. the ratio of successful runs to the total number of runs (up to 0.70).
3. The parameter that increases most dramatically during a forager's lifetime is direction fidelity, i.e. the tendency to remain faithful to a particular foraging direction.
4. A model based on some simple behavioural rules is used to describe the experimental findings that within an isotropic food environment individual ants develop spatial foraging idiosyncrasies, and do so at a rate that increases with the food densities they encounter.
5. Finally, it is argued that in functional terms direction fidelity is related to the navigational benefits resulting from exploiting familiar (route-based) landmark information, and hence reduces round-trip time and by this physiological stress and predatory risk.  相似文献   

9.
1.  Food webs, the set of predator–prey interactions in an ecosystem, are a prototypical complex system. Much research to date has concentrated on the use of models to identify and explain the key structural features which characterize food webs.
2.  These models often fall into two general categories: (i) phenomenological models which are built upon a set of heuristic rules in order to explain some empirical observation and (ii) population-level models in which interactions between individuals result in emergent properties for the food web. Both types of models have helped to uncover how food-web structure is a product of factors such as foraging behaviour, prey selection and species' body sizes.
3.  Historically, the two types of models have followed rather different approaches to the problem. Despite the apparent differences, the overlap between the two styles of models is substantial. Examples are highlighted here.
4.  By paying greater attention to both the similarities and differences between the two, we will be better able to demonstrate the ecological insights offered by phenomenological models. This will help us, for example, design experiments which could validate or refute underlying assumptions of the models. By linking models to data, scaling from individuals to networks, we will be closer to understanding the true origins of food-web structure.  相似文献   

10.
Recent modeling studies exploring the effect of consumers’ adaptivity in diet composition on food web complexity invariably suggest that adaptivity in foraging decisions of consumers makes food webs more complex. That is, it allows for survival of a higher number of species when compared with non-adaptive food webs. Population-dynamical models in these studies share two features: parameters are chosen uniformly for all species, i.e. they are species-independent, and adaptive foraging is described by the search image model. In this article, we relax both these assumptions. Specifically, we allow parameters to vary among the species and consider the diet choice model as an alternative model of adaptive foraging. Our analysis leads to three important predictions. First, for species-independent parameter values for which the search image model demonstrates a significant effect of adaptive foraging on food web complexity, the diet choice model produces no such effect. Second, the effect of adaptive foraging through the search image model attenuates when parameter values cease to be species-independent. Finally, for the diet choice model we observe no (significant) effect of adaptive foraging on food web complexity. All these observations suggest that adaptive foraging does not always lead to more complex food webs. As a corollary, future studies of food web dynamics should pay careful attention to the choice of type of adaptive foraging model as well as of parameter values.  相似文献   

11.
Species coexistence within ecosystems and the stability of patterns of temporal changes in population sizes are central topics in ecological theory. In the last decade, adaptive behaviour has been proposed as a mechanism of population stabilization. In particular, widely distributed adaptive trophic behaviour (ATB), the fitness-enhancing changes in individuals' feeding-related traits due to variation in their trophic environment, may play a key role in modulating the dynamics of feeding relationships within natural communities. In this article, we review and synthesize models and results from theoretical research dealing with the consequences of ATB on the structure and dynamics of complex food webs. We discuss current approaches, point out limitations, and consider questions ripe for future research. In spite of some differences in the modelling and analytic approaches, there are points of convergence: (1) ATB promotes the complex structure of ecological networks, (2) ATB increases the stability of their dynamics, (3) ATB reverses May's negative complexity-stability relationship, and (4) ATB provides resilience and resistance of networks against perturbations. Current knowledge supports ATB as an essential ingredient for models of community dynamics, and future research that incorporates ATB will be well positioned to address questions important for basic ecological research and its applications.  相似文献   

12.
Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.  相似文献   

13.
Abstract. 1. The allocation of honey bee foragers among food patches is a result of decisions made by individual bees that are based on internal and external cues.
2. Decision-making processes are often based on internal thresholds. For example, if the quality of the food source is assessed by a forager as exceeding its internal threshold, the bee will continue foraging on that food source.
3. It is often assumed that all individuals have the same threshold and therefore use the same thresholds in decision-making, but because the honey bee queen mates with 12–30 males, the workers within a colony are genetically heterogeneous. Thus, the thresholds used by individual bees may be genetically variable within a colony.
4. Models of colony-level foraging behaviour of honey bees suggest that the rate of abandoning food sources is a critical parameter affecting foraging success. Moreover, these models show that variance among subfamilies in their abandonment rates may increase the colony's foraging efficiency.
5. Experimental data showing the relationship between the probability of abandoning a food source and its profitability are lacking, as is information on any variation in abandonment rates among subfamilies.
6. Abandonment rates were determined experimentally for four honey bee families for seven different sucrose concentrations. The results showed that abandonment rates appear to be invariant among (sub)families. The importance of forager fidelity to declining food sources is discussed with respect to foraging efficiency in a changing environment.  相似文献   

14.
We investigate the influence of functional responses (Lotka-Volterra or Holling type), initial topological web structure (randomly connected or niche model), adaptive behavior (adaptive foraging and predator avoidance) and the type of constraints on the adaptive behavior (linear or nonlinear) on the stability and structure of food webs. Two kinds of stability are considered: one is the network robustness (i.e., the proportion of species surviving after population dynamics) and the other is the species deletion stability. When evaluating the network structure, we consider link density as well as the trophic level structure. We show that the types of functional responses and initial web structure do not have a large effect on the stability of food webs, but foraging behavior has a large stabilizing effect. It leads to a positive complexity-stability relationship whenever higher "complexity" implies more potential prey per species. The other type of adaptive behavior, predator avoidance behavior, makes food webs only slightly more stable. The observed link density after population dynamics depends strongly on the presence or absence of adaptive foraging, and on the type of constraints used. We also show that the trophic level structure is preserved under population dynamics with adaptive foraging.  相似文献   

15.
Few models concern how environmental variables such as temperature affect community structure. Here, we develop a model of how temperature affects food web connectance, a powerful driver of population dynamics and community structure. We use the Arrhenius equation to add temperature dependence of foraging traits to an existing model of food web structure. The model predicts potentially large temperature effects on connectance. Temperature-sensitive food webs exhibit slopes of up to 0.01 units of connectance per 1°C change in temperature. This corresponds to changes in diet breadth of one resource item per 2°C (assuming a food web containing 50 species). Less sensitive food webs exhibit slopes down to 0.0005, which corresponds to about one resource item per 40°C. Relative sizes of the activation energies of attack rate and handling time determine whether warming increases or decreases connectance. Differences in temperature sensitivity are explained by differences between empirical food webs in the body size distributions of organisms. We conclude that models of temperature effects on community structure and dynamics urgently require considerable development, and also more and better empirical data to parameterize and test them.  相似文献   

16.
Ecological and evolutionary mechanisms are increasingly thought to shape local community dynamics. Here, I evaluate if the local adaptation of a meso-predator to an apex predator alters local food webs. The marbled salamander (Ambystoma opacum) is an apex predator that consumes both the spotted salamander (Ambystoma maculatum) and shared zooplankton prey. Common garden experiments reveal that spotted salamander populations which co-occur with marbled salamanders forage more intensely than those that face other predator species. These foraging differences, in turn, alter the diversity, abundance and composition of zooplankton communities in common garden experiments and natural ponds. Locally adapted spotted salamanders exacerbate prey biomass declines associated with apex predation, but dampen the top-down effects of apex predation on prey diversity. Countergradient selection on foraging explains why locally adapted spotted salamanders exacerbate prey biomass declines. The two salamander species prefer different prey species, which explains why adapted spotted salamanders buffer changes in prey composition owing to apex predation. Results suggest that local adaptation can strongly mediate effects from apex predation on local food webs. Community ecologists might often need to consider the evolutionary history of populations to understand local diversity patterns, food web dynamics, resource gradients and their responses to disturbance.  相似文献   

17.
A general question in biology is how processes at one scale, for example that of individual organisms, influence patterns at larger scales, for example communities of interacting individuals. Here we ask how changing the size‐dependence of the foraging behaviour of individuals can influence the structure of food webs. We assembled communities using a model in which species interactions are determined by allometric foraging rules of (1) handling time and (2) attack rates, and also (3) the distribution of body sizes. We systematically varied these three factors and examined their effects on three community level, food web allometries: the generality ‐ mass correlation, the vulnerability ‐ mass correlation and the trophic height ‐ mass correlation. The results demonstrate how allometries of individual foraging behaviour (handling time and attack rates) are linked across scales of organisation: different community level allometries are influenced by different individual level allometries. For example, generality allometries in the community are most affected by the individual allometric relationships of the attack rate, whereas trophic level allometries in the community are more strongly influenced by variation in individual handling time allometries. Importantly, we also find that the shape of the body size distribution from which species are drawn has a substantial influence on how these links between scales operate. This study suggests that understanding the variation of size structure among ecological networks requires knowledge about the causes of variation in individual foraging behaviour and determinants of the regional body size distribution.  相似文献   

18.
Foraging by consumers acts as a biotic filtering mechanism for biodiversity at the trophic level of resources. Variation in foraging behaviour has cascading effects on abundance, diversity, and functional trait composition of the community of resource species. Here we propose diversity at giving-up density (DivGUD), i.e. when foragers quit exploiting a patch, as a novel concept and simple measure quantifying cascading effects at multiple spatial scales. In experimental landscapes with an assemblage of plant seeds, patch residency of wild rodents decreased local α-DivGUD (via elevated mortality of species with large seeds) and regional γ-DivGUD, while dissimilarity among patches in a landscape (ß-DivGUD) increased. By linking theories of adaptive foraging behaviour with community ecology, DivGUD allows to investigate cascading indirect predation effects, e.g. the ecology-of-fear framework, feedbacks between functional trait composition of resource species and consumer communities, and effects of inter-individual differences among foragers on the biodiversity of resource communities.  相似文献   

19.
20.
The adaptive food-web hypothesis suggests that an adaptive foraging switch inverses the classically negative complexity-stability relationships of food webs into positive ones, providing a possible resolution for the long-standing paradox of how populations persist in a complex natural food web. However, its applicability to natural ecosystems has been questioned, because the positive relationship does not emerge when a niche model, a realistic "benchmark" of food-web models, is used. I hypothesize that, in the niche model, increasing connectance influences the fraction of basal species to destabilize the system and this masks the inversion of the negative complexity-stability relationship in the presence of adaptive foraging. A model analysis shows that, if this confounding effect is eliminated, then, even in a niche model, a population is more likely to persist in a more complex food web. This result supports the robustness of adaptive food-web hypothesis and reveals the condition in which the hypothesis should be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号