首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical collecting ducts inhibited SK activity. The inhibition of the channel by ATP was reversible, concentration dependent (K(i) = 64 microM), and could be completely prevented by pretreatment with suramin, a specific purinergic receptor (P(2)) blocker. Ranking of the inhibitory potency of several nucleotides showed strong inhibition by ATP, UTP, and ATP-gamma-S, whereas alpha, beta-Me ATP, and 2-Mes ATP failed to affect channel activity. This nucleotide sensitivity is consistent with P(2)Y(2) purinergic receptors mediating the inhibition of SK by ATP. Single channel analysis further demonstrated that the inhibitory effects of ATP could be elicited through activation of apical receptors. Moreover, the observation that fluoride mimicked the inhibitory action of ATP suggests the activation of G proteins during purinergic receptor stimulation. Channel inhibition by ATP was not affected by blocking phospholipase C and protein kinase C. However, whereas cAMP prevented channel blocking by ATP, blocking protein kinase A failed to abolish the inhibitory effects of ATP. The reduction of K channel activity by ATP could be prevented by okadaic acid, an inhibitor of protein phosphatases, and KT5823, an agent that blocks protein kinase G. Moreover, the effect of ATP was mimicked by cGMP and blocked by L-NAME (N(G)-nitro-l-arginine methyl ester). We conclude that the inhibitory effect of ATP on the apical K channel is mediated by stimulation of P(2)Y(2) receptors and results from increasing dephosphorylation by enhancing PKG-sensitive phosphatase activity.  相似文献   

2.
The patch-clamp technique was employed to investigate the response of single L-type Ca2+ channels to the protease trypsin applied to the intracellular face of excised membrane patches from guinea pig ventricular myocytes. Calpastatin and ATP were used to prevent run-down of Ca2+ channel activity monitored with 96 mM Ba2+ as charge carrier in the presence of 2.5 microM (-)-BAYK 8644. Upon application of trypsin (100 micrograms/ml) channel activity was enhanced fourfold and remained elevated upon removal of trypsin, as expected of a proteolytic, irreversible modification. The trypsin effect was not mediated by a proteolytic activation of protein kinases, as evidenced by the insensitivity of this effect to protein kinase inhibitors. Trypsin-modified Ca2+ channels exhibited the usual run-down phanomenon upon removal of calpastatin and ATP. In ensemble average currents trypsin-induced changes of channel function are apparent as a threefold increase in peak current and a reduction in current inactivation. At the single channel level these effects were based on about a twofold increase in both Ca2+ channels' availability and open probability. Neither the actual number of channels in the patch nor their unitary conductance as well as reversal potential was changed by trypsin. The Ca(2+)-induced inactivation was not impaired, as judged by a comparable sensitivity of trypsin-modified Ca2+ channels to intracellular Ca2+. Similarly, trypsin treatment did not affect the sensitivity of Ca2+ channels to phenylalkylmine inhibition. The observed alterations in channel function are discussed in terms of possible structural correlates.  相似文献   

3.
The activity of apical K(+) channels in cortical collecting duct (CCD) is stimulated and inhibited by protein kinase A (PKA) and C (PKC), respectively. Direct interaction between phosphatidylinositol 4,5-bisphosphate (PIP(2)) and the cloned CCD K(+) channel, ROMK1, is critical for channel opening. We have found previously that phosphorylation of ROMK1 by PKA increases affinity of the channel for PIP(2) and mutation of PKA sites reduces the affinity of ROMK1 for PIP(2). In this study we investigate the molecular mechanism for PKC regulation of ROMK and report that mutants of ROMK1 with reduced PIP(2) affinity exhibit an increased sensitivity to inhibition by phorbol myristate acetate (PMA). The effect of PMA can be prevented by pretreatment with calphostin-C. Activation of PKC by carbachol in Xenopus oocytes co-expressing M1 muscarinic receptors also causes inhibition of the channels. Calphostin-C prevents carbachol-induced inhibition, suggesting that activation of PKC is necessary for inhibition of the channels. PMA reduces open probability of the channel in cell-attached patch clamp recordings. After inhibition by PMA in cell-attached recordings, application of PIP(2) to the cytoplasmic face of excised inside-out membranes restores channel activity. PMA reduces PIP(2) content in oocyte membrane and calphostin-C prevents the reduction. These results suggest that reduction of membrane PIP(2) content contributes to the inhibition of ROMK1 channels by PKC. This mechanism may underscore the inhibition of K(+) secretion in CCD by hormones that activate PKC.  相似文献   

4.
Ubiquitination of ENaC subunits has been shown to negatively regulate the cell surface expression of ENaC channels. We have previously demonstrated that epsin links ubiquitinated ENaC to clathrin adaptors for clathrin-mediated endocytosis. Epsin is thought to directly modify the curvature of membranes upon binding to phosphatidylinositol 4,5-bisphosphate (PIP2) where it recruits clathrin and stimulates lattice assembly. Murine phosphatidylinositol 4-phosphate 5-kinase alpha (PI5KIalpha) has been shown to enhance endocytosis in a PIP2-dependent manner. We tested the hypothesis that PI5KIalpha-mediated PIP2 production would negatively regulate ENaC current by enhancing epsin-mediated endocytosis of the channel. Expression of PI5KIalpha decreased ENaC currents in Xenopus oocytes by 80%, entirely because of a decrease in cell surface ENaC levels. Catalytically inactive mutants of PI5Kalpha had no effect on ENaC activity. Expression of the PIP2 binding region of epsin increased ENaC current in oocytes, an effect completely reversed by co-expression of PI5KIalpha. Overexpression of epsin reduced amiloride-sensitive current in CCD cells. Overexpression of PI5KIalpha enhanced membrane PIP2 levels and reduced apical surface expression of ENaC in CCD cells, down-regulating amiloride-sensitive current. Knockdown of PI5KIalpha with isoform-specific siRNA resulted in a 4-fold enhancement of ENaC activity. PI5KIalpha localized exclusively to the apical plasma membrane domain when overexpressed in mouse CCD cells, consistent for a role in regulating PIP2 production at the apical plasma membrane. We conclude that membrane turnover events regulating ENaC surface expression and activity in oocytes and CCD cells can be regulated by PI5KIalpha.  相似文献   

5.
Using patch clamp techniques, we found that the epithelial sodium channel (ENaC) activity in the apical membrane of A6 distal nephron cells showed a sudden rundown beginning at 4 min after forming the inside-out configuration. This sudden rundown was prevented by addition of anionic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidylserine (PS) to the "cytoplasmic" bath. Conversely, chelation of endogenous PIP(2) with anti-PIP(2) antibody, hydrolysis of PIP(2) with either exogenous phospholipase C (PLC) or activation of endogenous PLC by extracellular ATP, or application of the positively charged molecule, poly-L-lysine, accelerated channel rundown. However, neutral phosphatidylcholine had no effect on ENaC activity. By two-electrode voltage clamp recordings, we demonstrated that PIP(2) and PIP(3) significantly increased amiloride-sensitive current in Xenopus oocytes injected with cRNAs of rat alpha-, beta-, and gamma-ENaC. However, PIP(2) and PIP(3) did not affect surface expression of ENaC, indicating that PIP(2) and PIP(3) regulate ENaC at the level of the inner plasma membrane through a mechanism that is independent of ENaC trafficking. These data suggest that anionic phospholipids may mediate the regulation of ENaC by PLC- or phosphoinositide 3-kinase-coupled receptors.  相似文献   

6.
The ROMK (Kir1.1; Kcnj1) gene is believed to encode the apical small conductance K(+) channels (SK) of the thick ascending limb (TAL) and cortical collecting duct (CCD). Loss-of-function mutations in the human ROMK gene cause Bartter's syndrome with renal Na(+) wasting, consistent with the role of this channel in apical K(+) recycling in the TAL that is crucial for NaCl reabsorption. However, the mechanism of renal K(+) wasting and hypokalemia that develop in individuals with ROMK Bartter's syndrome is not apparent given the proposed loss of the collecting duct SK channel. Thus, we generated a colony of ROMK null mice with approximately 25% survival to adulthood that provides a good model for ROMK Bartter's syndrome. The remaining 75% of null mice die in less than 14 days after birth. The surviving ROMK null mice have normal gross renal morphology with no evidence of significant hydronephrosis, whereas non-surviving null mice exhibit marked hydronephrosis. ROMK protein expression was absent in TAL and CCD from null mice but exhibited normal abundance and localization in wild-type littermates. ROMK null mice were polyuric and natriuretic with an elevated hematocrit consistent with mild extracellular volume depletion. SK channel activity in TAL and CCD was assessed by patch clamp analysis in ROMK wild-type ROMK(+/+), heterozygous ROMK(+/-), and null ROMK(-/-) mice. In 313 patches with successful seals from the three ROMK genotypes, SK channel activity in ROMK (+/+ and +/-) exhibited normal single channel kinetics. The expression frequencies are as follows: 67 (TAL) and 58% (CCD) in ROMK(+/+); about half that of the wild-type in ROMK(+/-), being 38 (TAL) and 25% (CCD); absent in both TAL or CCD in ROMK(-/-) between 2 and 5 weeks in 15 mice (61 and 66 patches, respectively). The absence of SK channel activity in ROMK null mice demonstrates that ROMK is essential for functional expression of SK channels in both TAL and CCD. Despite loss of ROMK expression, the normokalemic null mice exhibited significantly increased kaliuresis, indicating alternative mechanisms for K(+) absorption/secretion in the nephron.  相似文献   

7.
We used the patch-clamp technique to study the effects of ATP on the small-conductance potassium channel in the apical membrane of rat cortical collecting duct (CCD). This channel has a high open probability (0.96) in the cell-attached mode but activity frequently disappeared progressively within 1-10 min after channel excision (channel "run-down"). Two effects of ATP were observed. Using inside-out patches, low concentrations of ATP (0.05-0.1 mM) restored channel activity in the presence of cAMP-dependent protein kinase A (PKA). In contrast, high concentrations (1 mM) of adenosine triphosphate (ATP) reduced the open probability (Po) of the channel in inside-out patches from 0.96 to 0. 1.2 mM adenosine diphosphate (ADP) also blocked channel activity completely, but 2 mM adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP), a nonhydrolyzable ATP analogue, reduced Po only from 0.96 to 0.87. The half-maximal inhibition (Ki) of ATP and ADP was 0.5 and 0.6 mM, respectively, and the Hill coefficient of both ATP and ADP was close to 3. Addition of 0.2 or 0.4 mM ADP shifted the Ki of ATP to 1.0 and 2.0 mM, respectively. ADP did not alter the Hill coefficient. Reduction of the bath pH from 7.4 to 7.2 reduced the Ki of ATP to 0.3 mM. In contrast, a decrease of the free Mg2+ concentration from 1.6 mM to 20 microM increased the Ki of ATP to 1.6 mM without changing the Hill coefficient; ADP was still able to relieve the ATP-induced inhibition of channel activity over this low range of free Mg2+ concentrations. The blocking effect of ATP on channel activity in inside-out patches could be attenuated by adding exogenous PKA catalytic subunit to the bath. The dual effects of ATP on the potassium channel can be explained by assuming that (a) ATP is a substrate for PKA that phosphorylates the potassium channel to maintain normal function. (b) High concentrations of ATP inhibit the channel activity; we propose that the ATP-induced blockade results from inhibition of PKA-induced channel phosphorylation.  相似文献   

8.
Recent evidence suggests that the agonist-induced formation of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) via PI and PIP kinases may play an important role in transmembrane signalling. In the present work, the effect of genistein, a specific inhibitor of protein-tyrosine kinase, on phosphoinositide phosphorylation was studied in human platelets stimulated with the endoperoxide analogue, U46619. At 100 microM concentration, genistein, but not the related compounds, flavone and biochanin A, which possess only weak anti-protein-tyrosine kinase activity, significantly inhibited the U46619-induced accumulation of [3H]PIP (by 71%) and [3H]PIP2. These data suggest that phosphoinositide phosphorylation may be regulated, in part, by tyrosine phosphorylation in U46619-stimulated platelets.  相似文献   

9.
Agonists that elevate calcium in T84 cells stimulate chloride secretion by activating KBIC, an inwardly rectifying K channel in the basolateral membrane. We have studied the regulation of this channel by calcium, nucleotides and phosphorylation using patch clamp and short-circuit current (I SC) techniques. Open probability (P 0) was independent of voltage but declined spontaneously with time after excision. Rundown was slower if patches were excised into a bath solution containing ATP (10 m–5 mm), ATP (0.1 mm) + protein kinase A (PKA; 180 nm), or isobutylmethylxanthine (IBMX; 1 mm). Analysis of event durations suggested that the channel has at least two open and two closed states, and that rundown under control conditions is mainly due to prolongation of the long closed time. Channel activity was restimulated after rundown by exposure to ATP, the poorly hydrolyzable ATP analogue AMP-PNP, or ADP. Activity was further enhanced when PKA was added in the presence of MgATP, but only if free calcium concentration was elevated (400 nm). Nucleotide stimulation and inward rectification were both observed in nominally Mg-free solutions. cAMP modulation of basolateral potassium conductance in situ was confirmed by measuring currents generated by a transepithelial K gradient after permeabilization of the apical membrane using -toxin. Finally, protein kinase C (PKC) inhibited single KBIC channels when it was added directly to excised patches. These results suggest that nonhydrolytic binding of nucleotides and phosphorylation by PKA and PKC modulate the responsiveness of the inwardly rectifying K channel to Ca-mediated secretagogues.This work was supported by the Canadian Cystic Fibrosis Foundation and the Medical Research Council of Canada. J.W.H. is a Chercheur-Boursier of the Fonds de la recherche en santé du Québec.  相似文献   

10.
ABSTRACT

The phosphatidylinositol phosphate (PIP) kinases are a unique family of enzymes that generate an assortment of lipid messengers, including the pivotal second messenger phosphatidylinositol 4,5-bisphosphate (PI4,5P2). While members of the PIP kinase family function by catalyzing a similar phosphorylation reaction, the specificity loop of each PIP kinase subfamily determines substrate preference and partially influences distinct subcellular targeting. Specific protein-protein interactions that are unique to particular isoforms or splice variants play a key role in targeting PIP kinases to appropriate subcellular compartments to facilitate the localized generation of PI4,5P2 proximal to effectors, a mechanism key for the function of PI4,5P2 as a second messenger. This review documents the discovery of the PIP kinases and their signaling products, and summarizes our current understanding of the mechanisms underlying the localized generation of PI4,5P2 by PIP kinases for the regulation of cellular events including actin cytoskeleton dynamics, vesicular trafficking, cell migration, and an assortment of nuclear events.  相似文献   

11.
Purinergic stimulation of cardiomyocytes turns on a Src family tyrosine kinase-dependent pathway that stimulates PLCgamma and generates IP(3), a breakdown product of phosphatidylinositol 4,5-bisphosphate (PIP2). This signaling pathway closely regulates cardiac cell autonomic activity (i.e., spontaneous cell Ca(2+) spiking). PIP2 is phosphorylated on 3' by phosphoinositide 3-kinases (PI3Ks) that belong to a broad family of kinase isoforms. The product of PI3K, phosphatidylinositol 3,4,5-trisphosphate, regulates activity of PLCgamma. PI3Ks have emerged as crucial regulators of many cell functions including cell division, cell migration, cell secretion, and, via PLCgamma, Ca(2+) homeostasis. However, although PI3Kalpha and -beta have been shown to mediate specific cell functions in nonhematopoietic cells, such a role has not been found yet for PI3Kgamma.We report that neonatal rat cardiac cells in culture express PI3Kalpha, -beta, and -gamma. The purinergic agonist predominantly activates PI3Kgamma. Both wortmannin and LY294002 prevent tyrosine phosphorylation, and membrane translocation of PLCgamma as well as IP(3) generation in ATP-stimulated cells. Furthermore, an anti-PI3Kgamma, but not an anti-PI3Kbeta, injected in the cells prevents the effect of ATP on cell Ca(2+) spiking. A dominant negative mutant of PI3Kgamma transfected in the cells also exerts the same action. The effect of ATP was observed on spontaneous Ca(2+) spiking of wild-type but not of PI3Kgamma(2/2) embryonic stem cell-derived cardiomyocytes. ATP activates the Btk tyrosine kinase, Tec, and induces its association with PLCgamma. A dominant negative mutant of Tec blocks the purinergic effect on cell Ca(2+) spiking. Tec is translocated to the T-tubes upon ATP stimulation of cardiac cells. Both an anti-PI3Kgamma antibody and a dominant negative mutant of PI3Kgamma injected or transfected into cells prevent the latter event.We conclude that PI3Kgamma activation is a crucial step in the purinergic regulation of cardiac cell spontaneous Ca(2+) spiking. Our data further suggest that Tec works in concert with a Src family kinase and PI3Kgamma to fully activate PLCgamma in ATP-stimulated cardiac cells. This cluster of kinases provides the cardiomyocyte with a tight regulation of IP(3) generation and thus cardiac autonomic activity.  相似文献   

12.
The mechanism by which leptin increases ATP-sensitive K(+) (K(ATP)) channel activity was investigated using the insulin-secreting cell line, CRI-G1. Wortmannin and LY 294002, inhibitors of phosphoinositide 3-kinase (PI3-kinase), prevented activation of K(ATP) channels by leptin. The inositol phospholipids phosphatidylinositol bisphosphate and phosphatidylinositol trisphosphate (PtdIns(3,4,5)P(3)) mimicked the effect of leptin by increasing K(ATP) channel activity in whole-cell and inside-out current recordings. LY 294002 prevented phosphatidylinositol bisphosphate, but not PtdIns(3,4,5)P(3), from increasing K(ATP) channel activity, consistent with the latter lipid acting as a membrane-associated messenger linking leptin receptor activation and K(ATP) channels. Signaling cascades, activated downstream from PI 3-kinase, utilizing PtdIns(3,4,5)P(3) as a second messenger and commonly associated with insulin and cytokine action (MAPK, p70 ribosomal protein-S6 kinase, stress-activated protein kinase 2, p38 MAPK, and protein kinase B), do not appear to be involved in leptin-mediated activation of K(ATP) channels in this cell line. Although PtdIns(3,4,5)P(3) appears a plausible and attractive candidate for the messenger that couples K(ATP) channels to leptin receptor activation, direct measurement of PtdIns(3,4,5)P(3) demonstrated that insulin, but not leptin, increased global cellular levels of PtdIns(3,4,5)P(3). Possible mechanisms to explain the involvement of PI 3-kinases in K(ATP) channel regulation are discussed.  相似文献   

13.
Large conductance, calcium- and voltage-gated potassium (BK) channels are ubiquitous and critical for neuronal function, immunity, and smooth muscle contractility. BK channels are thought to be regulated by phosphatidylinositol 4,5-bisphosphate (PIP(2)) only through phospholipase C (PLC)-generated PIP(2) metabolites that target Ca(2+) stores and protein kinase C and, eventually, the BK channel. Here, we report that PIP(2) activates BK channels independently of PIP(2) metabolites. PIP(2) enhances Ca(2+)-driven gating and alters both open and closed channel distributions without affecting voltage gating and unitary conductance. Recovery from activation was strongly dependent on PIP(2) acyl chain length, with channels exposed to water-soluble diC4 and diC8 showing much faster recovery than those exposed to PIP(2) (diC16). The PIP(2)-channel interaction requires negative charge and the inositol moiety in the phospholipid headgroup, and the sequence RKK in the S6-S7 cytosolic linker of the BK channel-forming (cbv1) subunit. PIP(2)-induced activation is drastically potentiated by accessory beta(1) (but not beta(4)) channel subunits. Moreover, PIP(2) robustly activates BK channels in vascular myocytes, where beta(1) subunits are abundantly expressed, but not in skeletal myocytes, where these subunits are barely detectable. These data demonstrate that the final PIP(2) effect is determined by channel accessory subunits, and such mechanism is subunit specific. In HEK293 cells, cotransfection of cbv1+beta(1) and PI4-kinaseIIalpha robustly activates BK channels, suggesting a role for endogenous PIP(2) in modulating channel activity. Indeed, in membrane patches excised from vascular myocytes, BK channel activity runs down and Mg-ATP recovers it, this recovery being abolished by PIP(2) antibodies applied to the cytosolic membrane surface. Moreover, in intact arterial myocytes under physiological conditions, PLC inhibition on top of blockade of downstream signaling leads to drastic BK channel activation. Finally, pharmacological treatment that raises PIP(2) levels and activates BK channels dilates de-endothelized arteries that regulate cerebral blood flow. These data indicate that endogenous PIP(2) directly activates vascular myocyte BK channels to control vascular tone.  相似文献   

14.
Phosphoinositides such as phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate promote cell survival and protect against apoptosis by activating Akt/PKB, which phosphorylates components of the apoptotic machinery. We now report that another phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2) is a direct inhibitor of initiator caspases 8 and 9, and their common effector caspase 3. PIP2 inhibited procaspase 9 processing in cell extracts and in a reconstituted procaspase 9/Apaf1 apoptosome system. It inhibited purified caspase 3 and 8 activity, at physiologically attainable PIP2 levels in mixed lipid vesicles. Caspase 3 binding to PIP2 was confirmed by cosedimentation with mixed lipid vesicles. Overexpression of phosphatidylinositol phosphate 5-kinase alpha (PIP5KIalpha), which synthesizes PIP2, suppressed apoptosis, whereas a kinase-deficient mutant did not. Protection by the wild-type PIP5KIalpha was accompanied by decreases in the generation of activated caspases and of caspase 3-cleaved PARP. Protection was not mediated through PIP3 or Akt activation. An anti-apoptotic role for PIP(2) is further substantiated by our finding that PIP5KIalpha was cleaved by caspase 3 during apoptosis, and cleavage inactivated PIP5KIalpha in vitro. Mutation of the P(4) position (D279A) of the PIP5KIalpha caspase 3 cleavage consensus prevented cleavage in vitro, and during apoptosis in vivo. Significantly, the caspase 3-resistant PIP5KIalpha mutant was more effective in suppressing apoptosis than the wild-type kinase. These results show that PIP2 is a direct regulator of apical and effector caspases in the death receptor and mitochondrial pathways, and that PIP5KIalpha inactivation contributes to the progression of apoptosis. This novel feedforward amplification mechanism for maintaining the balance between life and death of a cell works through phosphoinositide regulation of caspases and caspase regulation of phosphoinositide synthesis.  相似文献   

15.
Regulation of polyphosphoinositide synthesis in cardiac membranes   总被引:1,自引:0,他引:1  
The relative distribution of phosphatidylinositol (PI) and phosphatidylinositol-4-phosphate (PIP) kinase activities in enriched cardiac sarcolemma (SL), sarcoplasmic reticulum (SR), and mitochondrial fractions was investigated. PI and PIP kinase activities were assayed by measuring 32P incorporation into PIP and phosphatidylinositol 4,5-bisphosphate (PIP2) from endogenous and exogenous PI in the presence of [gamma-32P]ATP. PI and PIP kinase activities were present in SL, SR, and mitochondrial fractions prepared from atria and ventricles although the highest activities were found in SL. A similar membrane distribution was found for PI kinase activity measured in the presence of detergent and exogenous PI. PI and PIP kinase activities were detectable in the cytosol providing exogenous PI and PIP and Triton X-100 were present. Further studies focused on characterizing the properties and regulation of PI and PIP kinase activities in ventricular SL. Alamethacin, a membrane permeabilizing antibiotic, increased 32P incorporation into PIP and PIP2 4-fold. PI and PIP kinase activities were Mg2+ dependent and plateaued within 15-20 min at 25 degrees C. Exogenous PIP and PIP2 (0.1 mM) had no effect on PIP and PIP2 labeling in SL in the absence of Triton X-100 but inhibited PI kinase activity in the presence of exogenous PI and Triton X-100. Apparent Km's of ATP for PI and PIP kinase were 133 and 57 microM, respectively. Neomycin increased PIP kinase activity 2- to 3-fold with minor effects on PI kinase activity. Calmidazolium and trifluoperazine activated PI kinase activity 5- to 20-fold and completely inhibited PIP kinase activity. Quercetin inhibited PIP kinase 66% without affecting PI kinase activity. NaF and guanosine 5'-O-(3-thiotriphosphate) had no effect on PI and PIP kinase activities, indicating that these enzymes were not modulated by G proteins. The probability that PIP and PIP2 synthesis in cardiac sarcolemma is regulated by product inhibition and phospholipase C was discussed.  相似文献   

16.
Kir6.2 channels linked to the green fluorescent protein (GFP) (Kir6. 2-GFP) have been expressed alone or with the sulfonylurea receptor SUR1 in HEK293 cells to study the regulation of K(ATP) channels by adenine nucleotides, phosphatidylinositol bisphosphate (PIP(2)), and phosphorylation. Upon excision of inside-out patches into a Ca(2+)- and MgATP-free solution, the activity of Kir6.2-GFP+SUR1 channels spontaneously ran down, first quickly within a minute, and then more slowly over tens of minutes. In contrast, under the same conditions, the activity of Kir6.2-GFP alone exhibited only slow rundown. Thus, fast rundown is specific to Kir6.2-GFP+SUR1 and involves SUR1, while slow rundown is a property of both Kir6.2-GFP and Kir6.2-GFP+SUR1 channels and is due, at least in part, to Kir6.2 alone. Kir6. 2-GFP+SUR1 fast phase of rundown was of variable amplitude and led to increased ATP sensitivity. Excising patches into a solution containing MgADP prevented this phenomenon, suggesting that fast rundown involves loss of MgADP-dependent stimulation conferred by SUR1. With both Kir6.2-GFP and Kir6.2-GFP+SUR1, the slow phase of rundown led to further increase in ATP sensitivity. Ca(2+) accelerated this process, suggesting a role for PIP(2) hydrolysis mediated by a Ca(2+)-dependent phospholipase C. PIP(2) could reactivate channel activity after a brief exposure to Ca(2+), but not after prolonged exposure. However, in both cases, PIP(2) reversed the increase in ATP sensitivity, indicating that PIP(2) lowers the ATP sensitivity by increasing P(o) as well as by decreasing the channel affinity for ATP. With Kir6.2-GFP+SUR1, slow rundown also caused loss of MgADP stimulation and sulfonylurea inhibition, suggesting functional uncoupling of SUR1 from Kir6.2-GFP. Ca(2+) facilitated the loss of sensitivity to MgADP, and thus uncoupling of the two subunits. The nonselective protein kinase inhibitor H-7 and the selective PKC inhibitor peptide 19-36 evoked, within 5-15 min, increased ATP sensitivity and loss of reactivation by PIP(2) and MgADP. Phosphorylation of Kir6.2 may thus be required for the channel to remain PIP(2) responsive, while phosphorylation of Kir6.2 and/or SUR1 is required for functional coupling. In summary, short-term regulation of Kir6.2+SUR1 channels involves MgADP, while long-term regulation requires PIP(2) and phosphorylation.  相似文献   

17.
Phosphatidylinosital-4,5-bisphosphate (PIP2) acts as an essential factor regulating the activity of all Kir channels. In most Kir members, the dependence on PIP2 is modulated by other factors, such as protein kinases (in Kir1), G(betagamma) (in Kir3), and the sulfonylurea receptor (in Kir6). So far, however, no regulator has been identified in Kir2 channels. Here we show that polyamines, which cause inward rectification by selectively blocking outward current, also regulate the interaction of PIP2 with Kir2.1 channels to maintain channel availability. Using spermine and diamines as polyamine analogs, we demonstrate that both spontaneous and PIP2 antibody-induced rundown of Kir2.1 channels in excised inside-out patches was markedly slowed by long polyamines; in contrast, polyamines with shorter chain length were ineffective. In K188Q mutant channels, which have a low PIP2 affinity, application PIP2 (10 microM) was unable to activate channel activity in the absence of polyamines, but markedly activated channels in the presence of long diamines. Using neomycin as a measure of PIP2 affinity, we found that long polyamines were capable of strengthening either the wild type or K188Q channels' interaction with PIP2. The negatively charged D172 residue inside the transmembrane pore region was critical for the shift of channel-PIP2 binding affinity by long polyamines. Sustained pore block by polyamines was neither sufficient nor necessary for this effect. We conclude that long polyamines serve a dual role as both blockers and coactivators (with PIP2) of Kir2.1 channels.  相似文献   

18.
The phosphorylation state of large-conductance calcium-activated potassium (BKCa) channels regulates their activity and is dynamically regulated by protein phosphatases and kinases, including protein kinase C (PKC). In this study, we showed that PKC activators up-regulate the activity of the BKCa channel alpha (α)-subunit, Slo1, in cell-attached patches of transfected COS7 cells. In an immune complex kinase assay, BKCa channels isolated from rat brain were phosphorylated in the presence of PKC activators, without the addition of exogenous PKC, which suggests that PKC and BKCa channels functionally interact in vivo. Four different PKC isozymes, including PKCδ, phosphorylated the C-terminus of Slo1 and the addition of purified PKCδ-activated BKCa channels in excised patches of transfected HEK293 cells. Our results demonstrate that PKC up-regulates BKCa channels and that PKCδ may functionally interact with BKCa channel complexes in vivo.  相似文献   

19.
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.  相似文献   

20.
The lipid dependence of phosphatidylinositol-4-phosphate (PIP) kinase purified from bovine brain membranes was investigated. In the assay used, PIP-Triton X-100 micelles containing the lipid to be tested were presented to the enzyme. Under these conditions, phosphatidic acid (PA) stimulated the enzyme activity in a concentration-dependent manner up to 20-fold when an equal molar ratio of PA to PIP was attained. Stimulation by PA was highly specific; other lipids including lyso-PA and dicetylphosphate had a relatively small effect. The activation by PA was completely suppressed by phosphatidylinositol 4,5-bisphosphate (PIP2). To investigate the effect of PA on PIP kinase activity in natural membranes, endogenous PA was generated in rat brain synaptosomal plasma membranes by incubation with phospholipase D. Subsequent phosphorylation with [gamma-32P]ATP yielded an enhanced labeling of PIP2 but not of PIP in these membranes. These results suggest that PIP kinase activity may be under control of PA levels in membranes. This may have important implications for the regulation of cellular responses by agonist-induced phosphoinositide turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号