首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesize that aggregation of thermoalkalophilic lipases could be a thermostability mechanism. The conserved tryptophans (W211, W234) in the lid are of particular interest owing to their previous involvements in aggregation and thermostability mechanisms in many other proteins. The thermoalkalophilic lipase from Bacillus thermocatenulatus (BTL2) and its mutants (W211A, W234A) were expressed and purified to homogeneity. We found that, when aggregated, BTL2 is more thermostable than its non-aggregating form, showing that aggregation potentiates thermostability in the thermoalkalophilic lipase. Among the two lid mutants, the W211A lowered aggregation tendency drastically and resulted in a much less thermostable variant of BTL2, which indicated that W211 stabilizes the intermolecular interactions in BTL2 aggregates. Further thermoactivity and CD spectroscopy analyses showed that W211A also led to a strong decrease in the optimal and the melting temperature of BTL2, implying stabilization by W211 also to the intramolecular interactions. The other lid mutant W234A had no effects on these properties. Finally, we analyzed the molecular basis of these experimental findings in-silico using the dimer (PDB ID: 1KU0) and the monomer (PDB ID: 2W22) lipase structures. The computational analyses confirmed that W211 stabilized the intermolecular interactions in the dimer lipase and it is critical to the stability of the monomer lipase. Explicitly W211 confers stability to the dimer and the monomer lipase through distinct aromatic interactions with Y273-Y282 and H87-P232 respectively. The insights revealed by this work shed light not only on the mechanism of thermostability and its relation to aggregation but also on the particular role of the conserved lid tryptophan in the thermoalkalophilic lipases.  相似文献   

2.
Alcohol/salt-based aqueous two-phase systems (ATPSs) were used to recover lipase derived from Burkholderia pseudomallei (B. pseudomallei). Nine biphasic systems, comprised of an alcohol-based top phase (ethanol, 2-propanol and 1-propanol) and a salt-based bottom phase (ammonium sulfate, potassium phosphate and sodium citrate), were evaluated for their effectiveness in lipase recovery. The stability of lipase in each of the solutions was tested, and phase diagrams were constructed for each system. The optimum partition efficiency for the purification of lipase was obtained in an ATPS of 16% (w/w) 2-propanol and 16% (w/w) phosphate in the presence of 4.5% (w/v) NaCl. The purified lipase had a purification factor of 13.5 and a yield of 99%.  相似文献   

3.
A lipase from Bacillus thermocatenulatus (BTL2) cloned in E. coli has been purified using a very simple method: interfacial activation on a hydrophobic support followed by desorption with Triton. Only one band was detected by SDS-PAGE. The pure enzyme was immobilized using different methodologies. BTL2 adsorbed on a hydrophobic support (octadecyl-Sepabeads) exhibited a hyperactivation with respect to the soluble enzyme, whereas the other immobilized preparations suffered a slight decrease in the expressed activity. The soluble enzyme was very stable, but all immobilized preparations were much more stable than the soluble enzyme, the octadecyl-Sepabeads-BTL2 preparation being the most stable one in all conditions (high temperature or in the presence of organic cosolvents), maintaining 100% of the activity at 65 degrees C or 30% of dioxane and 45 degrees C after several days of incubation. The glyoxyl preparation, the second more stable, retained 80% of the initial activity after 2 days, respectively. The adsorption of this thermophilic lipase on octadecyl-Sepabeads permitted an increase in the optimal temperature of the enzyme of 10 degrees C.  相似文献   

4.
The BTL2 lipase gene from Bacillus thermocatenulatus was subcloned into the pPICZalphaA vector and integrated further into the genome of Pichia pastoris GS115. One of the best transformants harboring the linearized plasmid pPalpha-BTL2 integrating into the P. pastoris genomic DNA was cultivated in a 5-L bioreactor filled with 4L of the culture medium BMMY. The BTL2 lipase was produced as an extracellular protein in large quantities of 309,000U/L supernatant. The lipase was purified using butyl-Sepharose with a specific activity of 23,000U/mg protein towards tributyrin. The pure enzyme was characterized and its physicochemical properties were compared to those of the BTL2 lipase, which had previously been expressed in Escherichia coli under the control of its native promoter on pUC18 or under the control of the strong temperature inducible promoter lambdaP(L), yielding 600U/g or 54,000U/g wet cells, respectively. The three proteins showed the same N-terminal sequence and had very similar pH optimum, pH stability, temperature optimum, thermostability, and substrate specificity profiles. Three enzymes were extremely stable in the presence of several organic solvents and detergents.  相似文献   

5.
Three microbial lipases (those from Candida rugosa, Humicola lanuginosa, and Mucor miehei) have been found to exhibit a tendency to form bimolecular aggregates in solution even at very low enzyme concentrations (44 microg/mL) in the absence of a detergent, as detected by gel filtration. The monomolecular form of the enzymes was found as unique only at low enzyme concentration and in the presence of detergents. However, in the case of the lipase B from Candida antarctica, no bimolecular form could be identified even at enzyme concentrations as high as 1.2 mg/mL in the absence of detergent. It has been stated that bimolecular and monomolecular structures display very different functional properties: (i) the enzyme specific activity decreased when the lipase concentration increased; (ii) the bimolecular form was much more stable than the monomeric one yielding a higher optimal T (increasing between 5 and 10 degrees C) and higher stability in inactivation experiments (the dimer half-life became several orders of magnitude higher than that of the monomer); (iii) the enantioselectivity depended on the enzyme concentration even after immobilization. For example, with use of the lipase from H. lanuginosa, the enantiomeric excess of the remaining ester in the hydrolysis of fully soluble ethyl ester of (R,S)-2-hydroxy-4-phenylbutanoic acid varied from 4 to 57 when the concentrated or diluted enzyme immobilized on PEI support, respectively, was used. It seems that the bimolecular structure of lipases might be formed by two open lipase molecules (interfacially activating each other) in very close contact and hence with a very altered active center.  相似文献   

6.
The thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9+/- 1 beta-carotene (Car), 2.9+/-0.8 plastoquinone 9 (PQ9) and 3.8+/-0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O(2) released per 37-38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-A, resulting in complete data sets of 3.2 A resolution.  相似文献   

7.
Human membrane 17 beta-hydroxysteroid dehydrogenase 2 is an enzyme essential in the conversion of the highly active 17beta-hydroxysteroids into their inactive keto forms in a variety of tissues. 17 beta-hydroxysteroid dehydrogenase 2 with 6 consecutive histidines at its N terminus was expressed in Sf9 insect cells. This recombinant protein retained its biological activity and facilitated the enzyme purification and provided the most suitable form in our studies. Dodecyl-beta-D-maltoside was found to be the best detergent for the solubilization, purification, and reconstitution of this enzyme. The overexpressed integral membrane protein was purified with a high catalytic activity and a purity of more than 90% by nickel-chelated chromatography. For reconstitution, the purified protein was incorporated into dodecyl-beta-D-maltoside-destabilized liposomes prepared from l-alpha-phosphatidylcholine. The detergent was removed by adsorption onto polystyrene beads. The reconstituted enzyme had much higher stability and catalytic activity (2.6 micromol/min/mg of enzyme protein with estradiol) than the detergent-solubilized and purified protein (0.9 micromol/min/mg of enzyme protein with estradiol). The purified and reconstituted protein (with a 2-kDa His tag) was proved to be a homodimer, and its functional molecular mass was calculated to be 90.4 +/- 1.2 kDa based on glycerol gradient analytical ultracentrifugation and chemical cross-linking study. The kinetic studies demonstrated that 17 beta-hydroxysteroid dehydrogenase 2 was an NAD-preferring dehydrogenase with the K(m) of NAD being 110 +/- 10 microM and that of NADP 9600 +/- 100 microM using estradiol as substrate. The kinetic constants using estradiol, testosterone, dihydrotestosterone, and 20 alpha-dihydroprogesterone as substrates were also determined.  相似文献   

8.
《Process Biochemistry》2010,45(4):534-541
The activity of a lipase from Geobacillus thermocatenulatus (BTL2) can be greatly improved by site-directed chemical modification of a single external Cys64. This residue is placed in the proximity of the region where the lid is allocated when the lipase exhibits its open and active form. Thiol group of Cys64 was modified by thiol-disulfide exchange with pyridyldisulfide poly-aminated-dextrans or mono-carboxylated-polyethyleneglycol. The modification was performed on the covalently immobilized lipase on CNBr-agarose or glyoxyl-agarose. The activity of modified derivatives was strongly dependent on the immobilized preparation, the polymer used and the substrate assayed. For example, the modification with PEG-COOH of BTL2 immobilized on glyoxyl-agarose increased 5-fold the enzyme activity towards the hydrolysis of 2-O-butyryl-2-phenylacetic acid. However, the modification with 3-(2-pyridyldithio)-propionyl-dextran-NH2 reduced the activity to 40%.The fact that the modified enzymes can be inhibited by an irreversible inhibitor much more rapidly than the unmodified ones suggested that the main effect of the modification is to somehow stabilize the open form of the lipase.  相似文献   

9.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.  相似文献   

10.
To expand the application of the streptavidin-biotin technology for reversible affinity purification of biotinylated proteins, a novel form of monomeric streptavidin was engineered and produced using Bacillus subtilis as the expression host. By changing as little as two amino acid residues (T90 and D128) to alanine, the resulting mutant streptavidin designated DM3 was produced 100% in the monomeric form as a soluble functional protein via secretion. It remained in the monomeric state in the presence or absence of biotin. Interaction of purified monomeric streptavidin with biotin was studied by surface plasmon resonance-based BIAcore biosensor. Its on-rate is comparable to that of monomeric avidin while its off-rate is seven times lower. The dissociation constant was determined to be 1.3 x 10(-8)M. These properties make it an attractive agent for affinity purification of biotinylated proteins. An affinity matrix with immobilized DM3 mutein was prepared and applied to purify biotinylated cytochrome c from a crude extract. Biotinylated cytochrome c could be purified to homogeneity in one step and was shown to retain full biological activity. Advantages of using DM3 mutein over other traditional methods in the purification of biotinylated proteins are discussed.  相似文献   

11.
Commercial lipase (triacylglycerol lipase, EC 3.1.1.3) of Pseudomonas cepacia (Amano) has been purified to homogeneity by a single chromatography on phenyl Sepharose. The eluted lipase crystallized spontaneously at 4°C in the eluent, containing 58–69% 2-propanol. The yield of the lipase was 87–100% and the specific activity during the hydrolysis of triolein 5800 U/mg protein. This protein has a molecular weight of 34.1 kDa as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Its purity was determined by SDS-Page and capillary zone electrophoresis to be ≥ 99%. Immobilization on Sepharose increased its stability in organic solvents. This lipase of P. cepacia differs from that of other Pseudomonas strains in respect of substrate specificity and during crystallization. It exhibits a high stability in organic solvents and supercritical carbon dioxide.  相似文献   

12.
Zhang B  Xie C  Yang X 《Peptides》2008,29(3):350-355
A novel small antifungal peptide produced by a Bacillus strain B-TL2 isolated from tobacco stems was purified. The purification procedure consisted of ammonium sulfate precipitation, cation exchange chromatography on CM-Sepharose Fast Flow column and reverse-phase HPLC on SOURCE 5RPC column. After the final isolation step, one peptide with antifungal activity, designated as BTL, was obtained. The molecular mass of the purified BTL was determined as 2500 Da and 2237.7 Da by SDS-PAGE and matrix-assisted laser desorption/ionization time of flight mass spectrometry, respectively. The N-amino acid sequence of BTL was determined to be NH(2)-KQQLATEAESAGPIL, which shows relatively low identity to other antimicrobial peptides from bacteria. The peptide exhibited strong inhibitory activity against mycelial growth of Bipolaris maydis, Alternaria brassicae, Aspergillus niger, Cercospora personata. The purified BTL displayed thermostability, almost retaining 100% activity at 100 degrees C for 15 min.  相似文献   

13.
Sarcoplasmic reticulum Ca2+-ATPase solubilized by the nonionic detergent octaethylene glycol monododecyl ether was studied by molecular sieve high-performance liquid chromatography (HPLC) and analytical ultracentrifugation. Significant irreversible aggregation of soluble Ca2+-ATPase occurred within a few hours in the presence of less than or equal to 50 microM Ca2+. The aggregates were inactive and were primarily held together by hydrophobic forces. In the absence of reducing agent, secondary formation of disulfide bonds occurred. The stability of the inactive dimer upon dilution permitted unambiguous assignment of its elution position and sedimentation coefficient. At high Ca2+ concentration (500 microM), monomeric Ca2+-ATPase was stable for several hours. Reversible self-association induced by variation in protein, detergent, and lipid concentrations was studied by large-zone HPLC. The association constant for dimerization of active Ca2+-ATPase was found to be 10(5)-10(6) M-1 depending on the detergent concentration. More detergent was bound to monomeric than to dimeric Ca2+-ATPase, even above the critical micellar concentration of the detergent. Binding of Ca2+ and vanadate as well as ATP-dependent phosphorylation was studied in monomeric and in reversibly associated dimeric preparations. In both forms, two high-affinity Ca2+ binding sites per phosphorylation site existed. The delipidated monomer purified by HPLC was able to form ADP-insensitive phosphoenzyme and to bind ATP and vanadate simultaneously. These results suggest that formation of Ca2+-ATPase oligomers in the membrane is governed by nonspecific forces (low affinity) and that each polypeptide chain constitutes a functional unit.  相似文献   

14.
An extracellular lipase from Aspergillus niger NCIM 1207 has been purified to homogeneity using ammonium sulfate precipitation followed by phenyl sepharose and Sephacryl-100 gel chromatography. This protocol resulted in 149 fold purification with 54% final recovery. The purified enzyme showed a prominent single band on SDS-PAGE. The purified enzyme is a monomeric protein of 32.2 kDa molecular weight and exhibits optimal activity at 50 degrees C. One interesting feature of this enzyme is its highly acidic pH optimum. The isoelectric point (pI) of lipase was 8.5. The purified lipase appears to be unique since it cleaved triolein at only 3-position releasing 1,2-diolein. Chemical modification studies revealed that His, Ser, Carboxylate and Trp are involved in catalysis.  相似文献   

15.
A three‐step purification of a unique lipase with halo‐, solvent‐, detergent‐, and thermo‐tolerance from Staphylococcus arlettae JPBW‐1 gave raise to a 27‐fold purification with a specific activity of 32.5 U/mg. The molecular weight of the purified lipase was estimated to be 45 kDa using SDS–PAGE, and its amino acid sequence was characterized using MALDI‐TOF‐MS analysis. The sequence obtained from MALDI‐TOF‐MS showed significant similarity with the capsular polysaccharide biosynthesis protein (CapD) of Staphylococcus aureus through comparative modeling approach using ROBETTA server. Identification of responsible fragments for homodimer formation was performed using comparative modeling and substrate binding domain through C‐terminus matching of this new lipase with the CapD of Staphylococcus aureus was executed. Thus, the experimental coupled molecular modeling postulated a structure–activity relationship of lipase from S. arlettae JPBW‐1, a potential candidate for detergent, leather, pulp, and paper industries.  相似文献   

16.
The gene product of braB encoding the Na+(Li+)-coupled carrier protein for L-leucine, L-isoleucine, and L-valine (LIV-II carrier) of Pseudomonas aeruginosa PML strain was identified and overexpressed using a T7 RNA polymerase/promoter plasmid system. The gene product was pulse-labeled with [35S]methionine as a protein of an apparent Mr of 34,000 on a sodium dodecyl sulfate-polyacrylamide gel. Cell membranes overproducing the LIV-II carrier were solubilized with n-dodecyl beta-D-maltopyranoside. The carrier protein was purified from the detergent extract by two purification steps: (i) immunoaffinity column chromatography using purified polyclonal antibody directed against synthetic 13-mer peptide corresponding to the carboxyl terminus region of the carrier and (ii) subsequent DEAE-cellulose column chromatography. The detergent was replaced by n-octyl beta-D-glucopyranoside prior to the first elution and phospholipid was present during purification. Proteoliposomes reconstituted with the purified LIV-II carrier exhibited Na+ or Li+ concentration gradient-driven transport of leucine, isoleucine, and valine. These results show that the LIV-II carrier was purified to be in a functional form.  相似文献   

17.
Hepatic triglyceride lipase (H-TGL) was purified to near homogeneity from heparin-containing rat liver perfusates with the following column chromatography steps: heparin-Sepharose affinity chromatography, anion-exchange chromatography on DEAE-Sephacel, and gel filtration on Ultrogel AcA 34. A final specific activity of 45,000 μmol fatty acid/mg/h was obtained with an overall 31% recovery of catalytic activity. The heparin-Sepharose step resulted in a 20-fold purification, while the DEAE and gel filtration steps led to further purification with complete recovery of activity. An extensive survey of various detergents as potential stabilizers of H-TGL activity led to the selection of Triton N-101 for use in the column buffers of the DEAE and gel filtration steps. Relative to initial H-TGL activity upon dilution in buffer without detergent, recoveries between 90 and 100% were consistently obtained with Triton N-101-containing buffers following a 24-h incubation at 20°C. In contrast after a 24-h incubation at 20°C those control samples lacking detergent were at least 95% inactivated. The highly purified H-TGL exhibited a single major band by sodium dodecyl sulfate-electrophoresis. The use of DEAE chromatography and stabilization of H-TGL with Triton N-101 are the improvements in purification that resulted in an 8-fold enhancement in specific activity relative to the highest previous report of purification from rat liver perfusates.  相似文献   

18.
Lipases are important as additives in detergent formulations but their biocatalytic potential is increasingly exploited in the synthesis of high-added value chemicals, in fine-chemical production and in the pharmaceutical industry. Traditionally, conventional purification schemes comprise several chromatographic steps. Here we report a new purification procedure of the lipase (LipA) that is endogenously secreted by the Gram-negative bacterium Burkholderia glumae. This affinity purification combines the specific binding scaffold of a lipase-specific foldase (Lif) and the intrinsic resistance to chemical denaturation of LipA. The newly devised method is less labor-intensive, is fast, leads to a homogeneous preparation and can be easily scaled up. The novel and the conventional purification strategies were evaluated in parallel and characteristics of the B. glumae lipase were analyzed via CD spectroscopy. Lipopolysaccharide (LPS) was still present in the samples purified via the conventional purification scheme and was shown to increase the thermostability of the lipase.  相似文献   

19.
For structural studies of integral membrane proteins, including their 3D crystallization, the judicious use of detergent for solubilization and purification is required. Detergent binding by the solubilized protein is an important parameter to determine the hydrodynamic properties in terms of size and aggregational (monomeric/oligo(proto)meric) state of the protein. Detergent binding can be measured by gel filtration chromatography under equilibrium conditions and after separation from mixed micelles of solubilized lipid and detergent. Using sarcoplasmic reticulum Ca(2+)-ATPase as an example, we demonstrate in this protocol complete procedures for measurement of detergent binding using (i) radiolabeled n-dodecyl-beta-D-maltoside (DM) or (ii) from measurements of the increase in refractive index due to the presence of bound detergent on the protein. The latter measurement can also be performed by sedimentation velocity (SV) analysis in the analytical ultracentrifuge which in addition allows determination of the sedimentation coefficient. In combination with estimation of Stokes radius by gel filtration calibration, the molecular mass and asymmetry of the solubilized protein can be calculated. In the proposed protocols, the gel chromatographic procedures require 1 d; SV experiments are performed just after size exclusion. The whole time for these experiments is 24 h. Data analysis of analytical ultracentrifugation requires a couple of days.  相似文献   

20.
Structural knowledge of the cystic fibrosis transmembrane conductance regulator (CFTR) requires developing methods to purify and stabilize this aggregation-prone membrane protein above 1 mg/ml. Starting with green fluorescent protein- and epitope-tagged human CFTR produced in mammalian cells known to properly fold and process CFTR, we devised a rapid tandem affinity purification scheme to minimize CFTR exposure to detergent in order to preserve its ATPase function. We compared a panel of detergents, including widely used detergents (maltosides, neopentyl glycols (MNG), C12E8, lysolipids, Chaps) and innovative detergents (branched alkylmaltosides, facial amphiphiles) for CFTR purification, function, monodispersity and stability. ATPase activity after reconstitution into proteoliposomes was 2–3 times higher when CFTR was purified using facial amphiphiles. ATPase activity was also demonstrated in purified CFTR samples without detergent removal using a novel lipid supplementation assay. By electron microscopy, negatively stained CFTR samples were monodisperse at low concentration, and size exclusion chromatography showed a predominance of monomer even after CFTR concentration above 1 mg/ml. Rates of CFTR aggregation quantified in an electrophoretic mobility shift assay showed that detergents which best preserved reconstituted ATPase activity also supported the greatest stability, with CFTR monomer half-lives of 6–9 days in MNG or Chaps, and 12–17 days in facial amphiphile. Cryoelectron microscopy of concentrated CFTR in MNG or facial amphiphile confirmed mostly monomeric protein, producing low resolution reconstructions in conformity with similar proteins. These protocols can be used to generate samples of pure, functional, stable CFTR at concentrations amenable to biophysical characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号