首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic cleavages at the NS3-NS4A, NS4A-NS4B, NS4B-NS5A, and NS5A-NS5B junctions of hepatitis C virus (HCV) polyprotein are effected by the virus-encoded serine protease contained within NS3. Using transient expression in HeLa cells of cDNA fragments that code for regions of the HCV polyprotein, we studied whether viral functions other than NS3 are required for proteolytic processing at these sites. We found that, in addition to NS3, a C-terminal 33-amino-acid sequence of the NS4A protein is required for cleavage at the NS3-NS4A and NS4B-NS5A sites and that it accelerates the rate of cleavage at the NS5A-NS5B junction. In addition, we show that NS4A can activate the NS3 protease when supplied in trans. Our data suggest that HCV NS4A may be the functional analog of flavivirus NS2B and pestivirus p10 proteins.  相似文献   

2.
We have tested the hypothesis that the flavivirus nonstructural protein NS3 is a viral proteinase that generates the termini of several nonstructural proteins by using an efficient in vitro expression system and monospecific antisera directed against the nonstructural proteins NS2B and NS3. A series of cDNA constructs was transcribed by using T7 RNA polymerase, and the RNA was translated in reticulocyte lysates. The resulting protein patterns indicated that proteolytic processing occurred in vitro to generate NS2B and NS3. The amino termini of NS2B and NS3 produced in vitro were found to be the same as the termini of NS2B and NS3 isolated from infected cells. Deletion analysis of cDNA constructs localized the protease domain within NS3 to the first 184 amino acids but did not eliminate the possibility that sequences within NS2B were also required for proper cleavage. Kinetic analysis of processing events in vitro and experiments to examine the sensitivity of processing to dilution suggested that an intramolecular cleavage between NS2A and NS2B preceded an intramolecular cleavage between NS2B and NS3. The data from these expression experiments confirm that NS3 is the viral proteinase responsible for cleavage events generating the amino termini of NS2B and NS3 and presumably for cleavages generating the termini of NS4A and NS5 as well.  相似文献   

3.
B Falgout  R H Miller    C J Lai 《Journal of virology》1993,67(4):2034-2042
Most proteolytic cleavages in the nonstructural protein (NS) region of the flavivirus polyprotein are effected by a virus-encoded protease composed of two viral proteins, NS2B and NS3. The N-terminal 180-amino-acid-region of NS3 includes sequences with homology to the active sites of serine proteases, and there is evidence that this portion of NS3 can mediate proteolytic cleavages. In contrast, nothing is known about required sequences in NS2B. We constructed a series of deletion mutations in the NS2B portion of plasmid pTM/NS2B-30% NS3, which expresses dengue virus type 4 (DEN4) cDNA encoding NS2B and the N-terminal 184 residues of NS3 from the T7 RNA polymerase promoter. Mutant or wild-type plasmids were transfected into cells that had been infected with a recombinant vaccinia virus expressing T7 RNA polymerase, and the protease activities of the expressed polyproteins were assayed by examining the extent of self-cleavage at the NS2B-NS3 junction. The results identify a 40-amino-acid segment of NS2B (DEN4 amino acids 1396 to 1435) essential for protease activity. A hydrophobicity profile of DEN4 NS2B predicts this segment constitutes a hydrophilic domain surrounded by hydrophobic regions. Hydrophobicity profiles of the NS2B proteins of other flaviviruses show similar patterns. Amino acid sequence alignment of this domain of DEN4 NS2B with comparable regions of other proteins of flaviviruses indicates significant sequence conservation, especially at the N-terminal end. These observations suggest that the central hydrophilic domain of NS2B of these other flaviviruses will also prove to be essential for protease activity.  相似文献   

4.
B Falgout  R Chanock    C J Lai 《Journal of virology》1989,63(5):1852-1860
Expression of dengue virus gene products involves specific proteolytic cleavages of a precursor polyprotein. To study the flanking sequences required for expression of the dengue virus nonstructural glycoprotein NS1, we constructed a series of recombinant vaccinia viruses that contain the coding sequence for NS1 in combination with various lengths of upstream and downstream sequences. The NS1 products expressed by these viruses in infected CV-1 cells were immune precipitated and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The data show that the 24-residue hydrophobic sequence preceding NS1 was necessary and sufficient for the production of glycosylated NS1 and that this sequence was cleaved from NS1 in the absence of most dengue virus proteins. This finding is consistent with previous proposals that this hydrophobic sequence serves as an N-terminal signal sequence that is cleaved by signal peptidase. The cleavage between the C terminus of NS1 and the downstream protein NS2a occurred when the complete NS2a was present. Recombinant viruses containing NS1 plus 15 or 49% of NS2a produced proteins larger than authentic NS1, indicating that the cleavage between NS1 and NS2a had not occurred. Failure of cleavage was not corrected by coinfection with a recombinant virus capable of cleavage. These results suggest that NS2a may be a cis-acting protease that cleaves itself from NS1, or NS2a may provide sequences for recognition by a specific cellular protease that cleaves at the NS1-NS2a junction.  相似文献   

5.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

6.
7.
Proteolytic processing of the dengue virus polyprotein is mediated by host cell proteases and the virus-encoded NS2B-NS3 two-component protease. The NS3 protease represents an attractive target for the development of antiviral inhibitors. The three-dimensional structure of the NS3 protease domain has been determined, but the structural determinants necessary for activation of the enzyme by the NS2B cofactor have been characterized only to a limited extent. To test a possible functional role of the recently proposed Phix(3)Phi motif in NS3 protease activation, we targeted six residues within the NS2B cofactor by site-specific mutagenesis. Residues Trp62, Ser71, Leu75, Ile77, Thr78, and Ile79 in NS2B were replaced with alanine, and in addition, an L75A/I79A double mutant was generated. The effects of these mutations on the activity of the NS2B(H)-NS3pro protease were analyzed in vitro by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of autoproteolytic cleavage at the NS2B/NS3 site and by assay of the enzyme with the fluorogenic peptide substrate GRR-AMC. Compared to the wild type, the L75A, I77A, and I79A mutants demonstrated inefficient autoproteolysis, whereas in the W62A and the L75A/I79A mutants self-cleavage appeared to be almost completely abolished. With exception of the S71A mutant, which had a k(cat)/K(m) value for the GRR-AMC peptide similar to that of the wild type, all other mutants exhibited drastically reduced k(cat) values. These results indicate a pivotal function of conserved residues Trp62, Leu75, and Ile79 in the NS2B cofactor in the structural activation of the dengue virus NS3 serine protease.  相似文献   

8.
A recombinant vaccinia virus containing cloned DNA sequences coding for the three structural proteins and nonstructural proteins NS1 and NS2a of dengue type 4 virus was constructed. Infection of CV-1 cells with this recombinant virus produced dengue virus structural proteins as well as the nonstructural protein NS1. These proteins were precipitated by specific antisera and exhibited the same molecular size and glycosylation patterns as authentic dengue virus proteins. Infection of cotton rats with the recombinant virus induced NS1 antibodies in 1 of 11 animals. However, an immune response to the PreM and E glycoproteins was not detected. A reduced level of gene expression was probably the reason for the limited serologic response to these dengue virus antigens.  相似文献   

9.
The non-structural protein NS2B/NS3 serine-protease complex of the dengue virus (DENV) is required for the maturation of the viral polyprotein. Dissociation of the NS2B cofactor from NS3 diminishes the enzymatic activity of the complex. In this study, we identified a small molecule inhibitor that interferes with the interaction between NS2B and NS3 using structure-based screening and a cell-based viral replication assay. A library containing 661,417 small compounds derived from the Molecular Operating Environment lead-like database was docked to the NS2B/NS3 structural model. Thirty-nine compounds with high scores were tested in a secondary screening using a cell-based viral replication assay. SK-12 was found to inhibit replication of all DENV serotypes (EC50 = 0.74–4.92 μM). In silico studies predicted that SK-12 pre-occupies the NS2B-binding site of NS3. Steady-state kinetics using a fluorogenic short peptide substrate demonstrated that SK-12 is a noncompetitive inhibitor against the NS2B/NS3 protease. Inhibition to Japanese encephalitis virus by SK-12 was relatively weak (EC50 = 29.81 μM), and this lower sensitivity was due to difference in amino acid at position 27 of NS3. SK-12 is the promising small-molecule inhibitor that targets the interaction between NS2B and NS3.  相似文献   

10.
Infection of mice with pneumonia virus of mice (PVM) provides a convenient experimental pathogenesis model in a natural host for a human respiratory syncytial virus-related virus. Extending our previous work showing that the PVM nonstructural (NS) proteins were pathogenicity factors in mice, we identify both the NS1 and NS2 proteins as antagonists of alpha/beta interferon (IFN-α/β) and IFN-λ by use of recombinant PVM (rPVM) with single and combined deletions of the NS proteins (ΔNS1, ΔNS2, and ΔNS1 ΔNS2). Wild-type and NS deletion PVMs were evaluated for growth and pathogenesis by infecting knockout mice that lack functional receptors to IFN-α/β, IFN-λ, or both. The absence of the receptor to IFN-α/β (IFNAR) or IFN-λ (interleukin-28 receptor α chain [IL-28Rα]) individually did not reverse the attenuated virulence of the NS deletion viruses although loss of IFNAR partially restored replication efficiency. When both receptors were deleted, replication and virulence were largely rescued for rPVM ΔNS1 and were significantly but not completely rescued for rPVM ΔNS2. As for rPVM ΔNS1 ΔNS2, the effect was mostly limited to partial enhancement of replication. This indicates that both IFN-α/β and IFN-λ contributed to restricting the NS deletion viruses, with the former playing the greater role. Interestingly, the replication and virulence of wild-type PVM were completely unaffected by the presence or absence of functional receptors to IFN-α/β and IFN-λ, indicating that both systems are strongly suppressed during infection. However, pretreatment of mice with IFN-α/β was protective against lethal rPVM challenge, whereas pretreatment with IFN-λ delayed but did not prevent disease and, in some cases, reduced mortality. The fact that virulence of rPVM lacking NS2 was not recovered completely when both interferon receptors were deleted suggests that NS2 may have further functions outside the IFN system.  相似文献   

11.
We have constructed vaccinia virus recombinants expressing dengue virus proteins from cloned DNA for use in experimental immunoprophylaxis. A recombinant virus containing a 4.0-kilobase DNA sequence that codes for three structural proteins, capsid (C), premembrane (pre-M), and envelope (E), and for nonstructural proteins NS1 and NS2a produced authentic pre-M, E, and NS1 in infected CV-1 cells. Mice immunized with this recombinant were protected against an intracerebral injection of 100 50% lethal doses of dengue 4 virus. A recombinant containing only genes C, pre-M, and E also induced solid resistance to challenge. Deletion of the putative C-terminal hydrophobic anchor of the E glycoprotein did not result in secretion of E from recombinant-virus-infected cells. Recombinants expressing only the E protein preceded by its own predicted N-terminal hydrophobic signal or by the signal of influenza A virus hemagglutinin or by the N-terminal 71 amino acids of the G glycoprotein of respiratory syncytial virus produced glycosylated E protein products of expected molecular sizes. These vaccinia virus recombinants also protected mice.  相似文献   

12.
The hepatitis C virus NS2/3 protease is responsible for cleavage of the viral polyprotein between nonstructural proteins NS2 and NS3. We show here that mutation of three highly conserved residues in NS2 (His(952), Glu(972), and Cys(993)) abrogates NS2/3 protease activity and that introduction of any of these mutations into subgenomic NS2-5B replicons results in complete inactivation of NS2/3 processing and RNA replication in both stable and transient replication assays. The effect of uncleaved NS2 on the various activities of NS3 was therefore explored. Unprocessed NS2 had no significant effect on the in vitro ATPase and helicase activities of NS3, whereas immunoprecipitation experiments demonstrated a decreased affinity of NS4A for uncleaved NS2/3 as compared with NS3. This subsequently resulted in reduced kinetics in an in vitro NS3 protease assay with the unprocessed NS2/3 protein. Interestingly, NS3 was still capable of efficient processing of the polyprotein expressed from a subgenomic replicon in Huh-7 cells in the presence of uncleaved NS2. Notably, we show that fusion with NS2 leads to the rapid degradation of NS3, whose activity is essential for RNA replication. Finally, we demonstrate that uncleaved NS2/3 degradation can be prevented by the addition of a proteasome inhibitor. We therefore propose that NS2/3 processing is a critical step in the viral life cycle and is required to permit the accumulation of sufficient NS3 for RNA replication to occur. The regulation of NS2/3 cleavage could constitute a novel mechanism of switching between viral RNA replication and other processes of the hepatitis C virus life cycle.  相似文献   

13.
Proteins NS4A and NS4B from Dengue Virus (DENV) are highly hydrophobic transmembrane proteins which are responsible, at least in part, for the membrane arrangements leading to the formation of the viral replication complex, essential for the viral life cycle. In this work we have identified the membranotropic regions of DENV NS4A and NS4B proteins by performing an exhaustive study of membrane rupture induced by NS4A and NS4B peptide libraries on simple and complex model membranes as well as their ability to modulate the phospholipid phase transitions P(β')-L(α) of DMPC and L(β)-L(α)/L(α)-H(II) of DEPE. Protein NS4A presents three membrane active regions coincident with putative transmembrane segments, whereas NS4B presented up to nine membrane active regions, four of them presumably putative transmembrane segments. These data recognize the existence of different membrane-active segments on these proteins and support their role in the formation of the replication complex and therefore directly implicated in the DENV life cycle.  相似文献   

14.
To study the role of specific regions of the yellow fever virus NS2B protein in proteolytic processing and association with the NS3 proteinase domain, a series of mutations were created in the hydrophobic regions and in a central conserved hydrophilic region proposed as a domain important for NS2B function. The effects of these mutations on cis cleavage at the 2B/3 cleavage site and on processing at other consensus cleavage sites for the NS3 proteinase in the nonstructural region were then characterized by cell-free translation and transient expression in BHK cells. Association between NS2B and the NS3 proteinase domain and the effects of mutations on complex formation were investigated by nondenaturing immunoprecipitation of these proteins expressed in infected cells, by cell-free translation, or by recombinant vaccinia viruses. Mutations within the hydrophobic regions had subtle effects on proteolytic processing, whereas mutations within the conserved domain dramatically reduced cleavage efficiency or abolished all cleavages. The conserved domain of NS2B is also implicated in formation of an NS2B-NS3 complex on the basis of the ability of mutations in this region to eliminate both association of these two proteins and trans-cleavage activity. In addition, mutations which either eliminated proteolytic processing or had no apparent effect on processing were found to abolish recovery of infectious virus following RNA transfection. These results suggest that the conserved region of NS2B is a domain essential for the function of the NS3 proteinase. Hydrophobic regions of NS2B whose structural integrity may not be essential for proteolytic processing may have additional functions during viral replication.  相似文献   

15.
We have constructed a recombinant baculovirus containing a 4.0-kilobase dengue virus cDNA sequence that codes for the three virus structural proteins, capsid (C) protein, premembrane (PreM) protein, and envelope glycoprotein (E), and nonstructural proteins NS1 and NS2a. Infection of cultured Spodoptera frugiperda cells with this recombinant virus resulted in the production of E and NS1 proteins that were similar in size to the corresponding viral proteins expressed in dengue virus-infected simian cells. Other dengue virus-encoded proteins such as PreM and C were also synthesized. Rabbits immunized with the dengue virus protein products of the recombinant virus developed antibodies to PreM, E, and NS1, although the titers were low, especially to PreM and E. Nevertheless, the dengue virus antigens produced by the recombinant virus induced resistance in mice to fatal dengue encephalitis.  相似文献   

16.
The protective immunity conferred by a set of recombinant vaccinia viruses containing the entire coding sequence of dengue virus type 4 nonstructural glycoprotein NS1 plus various flanking sequences was evaluated by using a mouse encephalitis model. Mice immunized with recombinant vNS1-NS2a, which expresses authentic NS1, were solidly protected against intracerebral dengue virus challenge. However, mice immunized with recombinants vNS1-15%NS2a and vRSVG/NS1-15%NS2a, which express aberrant forms of NS1, were only partially protected (63 to 67% survival rate). Serologic analysis showed that mice immunized with vNS1-NS2a developed high titers of antibodies to NS1 as measured by radioimmunoprecipitation, enzyme-linked immunosorbent assay, and complement-mediated cytolytic assays. In addition, a pool of sera from these animals was protective in a passive transfer experiment. Lower titers of NS1-specific antibodies were detected in sera of animals immunized with vNS1-15%NS2a or vRSVG/NS1-15%NS2a by all three assays. These data support the view that protection against dengue virus infection in mice may be mediated at least in part by NS1-specific antibodies through a mechanism of complement-mediated lysis of infected cells. Additionally, immunization with two recombinant viruses expressing authentic NS1 of dengue virus type 2 conferred partial protection (30-50%) against dengue virus type 2 challenge.  相似文献   

17.
We examined the extent to which CXCR3 mediates resistance to dengue infection. Following intracerebral infection with dengue virus, CXCR3-deficient (CXCR3(-/-)) mice showed significantly higher mortality rates than wild-type (WT) mice; moreover, surviving CXCR3(-/-) mice, but not WT mice, often developed severe hind-limb paralysis. The brains of CXCR3(-/-) mice showed higher viral loads than those of WT mice, and quantitative analysis using real-time PCR, flow cytometry, and immunohistochemistry revealed fewer T cells, CD8(+) T cells in particular, in the brains of CXCR3(-/-) mice. This suggests that recruitment of effector T cells to sites of dengue infection was diminished in CXCR3(-/-) mice, which impaired elimination of the virus from the brain and thus increased the likelihood of paralysis and/or death. These results indicate that CXCR3 plays a protective rather than an immunopathological role in dengue virus infection. In studies to identify critical CXCR3 ligands, CXCL10/IFN-inducible protein 10-deficient (CXCL10/IP-10(-/-)) mice infected with dengue virus showed a higher mortality rate than that of the CXCR3(-/-) mice. Although CXCL10/IP-10, CXCL9/monokine induced by IFN-gamma, and CXCL11/IFN-inducible T cell alpha chemoattractant share a single receptor and all three of these chemokines are induced by dengue virus infection, the latter two could not compensate for the absence of CXCL10/IP-10 in this in vivo model. Our results suggest that both CXCR3 and CXCL10/IP-10 contribute to resistance against primary dengue virus infection and that chemokines that are indistinguishable in in vitro assays differ in their activities in vivo.  相似文献   

18.
19.
The plasmid pET-21d-2c-5BDelta55 effectively expressing a C-terminally truncated form (NS5BDelta55) of the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was constructed. It was derived from pET-21d-5BDelta55 plasmid and contained six mutations in the ATG-start codon region and an additional cistron upstream the target gene. The C-terminally His-tagged NS5BDelta55 protein was expressed in Rosetta(DE3) Escherichia coli strain bearing an additional pRARE plasmid encoding extra copies of rare tRNAs. The yield of the target enzyme exceeded by a factor of 29 the yield of NS5BDelta55 protein expressed from the parental pET-21d-5BDelta55 plasmid (5 mg/L). The increase in the protein yield could be explained by facilitated protein translation initiation, resulted from disruption of the stable secondary mRNA structure. The pET-21d-2c-5BDelta55 plasmid yielded one third amount of the protein when expressed in BL-21(DE3) strain, indicating that the pRARE plasmid is required for a high-level expression of NS5BDelta55 protein. The 29-fold enhancement of the protein yield was accompanied by only a 2.5-fold increase of the corresponding mRNA level. The expression of another HCV NS5A protein His-tagged at the C-terminus in the developed system yielded a similar amount of the protein (4 mg/L), whereas its N-terminally His-tagged counterpart was obtained in a 30 mg/L yield. The NS5A protein purified under denaturing conditions and renatured in solution inhibited the HCV RdRp and was a substrate for human casein kinase II.  相似文献   

20.
Dengue virus is a major international public health concern, and there is a lack of available effective vaccines. Virus-specific epitopes could help in developing epitope peptide vaccine. Previously, a neutralizing monoclonal antibody (mAb) 4F5 against nonstructural protein 3 (NS3) of dengue virus 2 (DV2) was developed in our lab. In this work, the B cell epitope recognized by mAb 4F5 was identified using the phage-displayed peptide library. The results of the binding assay and competitive inhibition assay indicated that the peptides, residues 460–469 (U460-469 RVGRNPKNEN) of DV2 NS3 protein, were the B cell epitopes recognized by mAb 4F5. Furthermore, the epitope peptides and a control peptide were synthesized and then immunized female BALB/c mice. ELISA analysis showed that immunization with synthesized epitope peptide elicited a high level of antibody in mice, and immunofluorescent staining showed that the antisera from fusion epitope-immunized mice also responded to DV2 NS3 protein, which further characterized the specific response of the present epitope peptide. Therefore, the present work revealed the specificity of the newly identified epitope (U460-469) of DV2 NS3 protein, which may shed light on dengue virus (DV) vaccine design, DV pathogenesis study, and even DV diagnostic reagent development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号