首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Stimulation of normal rat splenic T cells with pertussigen (lymphocytosis-promoting factor from Bordetella pertussis) resulted in the release of a soluble factor that enhanced the assembly of N-linked oligosaccharides to IgE-binding factors during their biosynthesis. The glycosylation-enhancing factor (GEF) is a kallikrein-like enzyme and is purified by absorption to p-aminobenzamidine-Agarose followed by elution with benzamidine. Incubation of normal mouse mast cells with affinity-purified GEF or bradykinin, a product of cleavage of kininogen by kallikrein, resulted in the release of histamine and arachidonate from the cells. Passive sensitization of mast cells with mouse IgE antibody, followed by pretreatment of the cells with a suboptimal concentration of GEF, resulted in an enhancement of antigen-induced histamine release. It was found that GEF and bradykinin induced the same biochemical events in mast cells as those induced by bridging of IgE receptors. Both GEF and bradykinin induced phospholipid methylation and an increase in intracellular cyclic AMP (cAMP). Incorporation of 3H-methyl groups into phospholipids and intracellular cAMP levels both reached a maximum 30 sec after challenge with GEF or bradykinin, and then declined to base-line levels within 2 to 3 min. These biochemical events were followed by 45Ca influx and histamine release; 45Ca uptake reached a plateau value at 2 min, and histamine release reached a maximum at 5 to 8 min. The initial rise in cAMP induced by GEF (or bradykinin) was not inhibited by indomethacin, indicating that the activation of adenylate cyclase is not the result of prostaglandin synthesis. In both IgE-mediated and GEF-induced histamine release, inhibitors of methyltransferases, such as 3-deaza adenosine and L-homocysteine thiolactone, inhibited not only phospholipid methylation but also the cAMP rise and subsequent Ca2+ uptake and histamine release. The results indicate that GEF induces activation of methyltransferases and that phospholipid methylation is involved in the cAMP rise, Ca2+ uptake, and histamine release. The induction of the same biochemical events in the same sequence by bridging of IgE receptors and by GEF (bradykinin) supports the hypothesis that receptor bridging induces the activation of serine protease(s) and cleavage products of this enzyme in turn activate methyltransferases in mast cells.  相似文献   

2.
Bridging of IgE receptors on rat mast cell plasma membranes induces phospholipid methylation and a monophasic increase in cyclic AMP. The stimulation of phospholipid methylation in the plasma membrane appears to be intrinsic to the processes leading to Ca2+ influx and histamine release. Evidence was obtained that IgE receptors are closely associated with methyltransferases and adenylate cyclase in the plasma membranes. The activation of one enzyme is regulated by the other. An increase in the cyclic AMP level before receptor bridging suppressed phospholipid methylation. On the other hand, inhibition of phospholipid methylation may affect the initial rise in cyclic AMP. Our experiments also indicated that bridging the receptor activates a membrane-associated proteolytic enzyme. Inasmuch as the inhibition of the enzyme activation results in the suppression of both phospholipid methylation and initial rise in cyclic AMP induced by receptor bridging, the proteolytic enzyme may be involved in the activation of methyltransferases and adenylate cyclase.  相似文献   

3.
Glycosidic enzymes were used as probes to analyze the mechanism of NK cell-mediated cytotoxicity. Pretreatment of nylon wool-enriched CBA/J spleen cells, a murine NK clone, or human peripheral blood lymphocytes (PBL) with alpha-mannosidase, an exoglycosidase, led to a marked dose-dependent inhibition of NK lytic activity against YAC-1.2 or K562 tumor cells. Maximal inhibition occurred after a 60-min pretreatment of murine effectors at 37 degrees C, and the kinetics of NK inhibition by alpha-mannosidase was similar to the reported kinetics for enzymatic activity. Released hexose was detected chemically in the supernatant of mouse spleen cells treated with NK inhibitory dose of alpha-mannosidase, and inactivation of enzymatic function with EDTA reversed the NK inhibitory effect. These results suggest that alpha-mannosidase inhibited NK function by virtue of its enzymatic action. Culture of human PBL for 20-hr after treatment with this enzyme led to a greater than 70% recovery in NK lytic function. Recovery was blocked by incorporating tunicamycin, a glycosylation inhibitor of asparagine-linked glycoproteins, into the culture medium. These results suggest that the alpha-mannosidase-sensitive site may be de novo synthesized glycoprotein. Neuraminidase, beta-galactosidase, endo-beta-N-acetylglucosaminidase-D and H, and peptide-N-glycosidase treatments did not inhibit human NK cell lysis of K562 cells. Pretreatment of nylon wool-enriched CBA/J spleen cells or Percoll-enriched human LGL with alpha-mannosidase did not influence their capacity to bind YAC 1.2 target cells or K562 target cells, respectively, Ca++ pulse experiments revealed that the alpha-mannosidase-sensitive site on the NK cells was involved after target-effector binding but before the Ca++ influx. Pretreatment of effector cells with this enzyme which normally occurs after effector-target cell interaction. These results suggest that the phospholipid methylation reaction is coupled to the alpha-mannosidase-sensitive site on the NK cells. By analogy to other physiologic systems, such as histamine release in mast cells, the triggering of phospholipid methylation in the NK cells may serve as a mechanism for signal transduction across the plasma membrane.  相似文献   

4.
Biochemical analysis of desensitization of mouse mast cells   总被引:1,自引:0,他引:1  
Biochemical mechanisms of desensitization were explored by using peritoneal mouse mast cells saturated with monoclonal mouse IgE anti-DNP antibody. It was found that a 1-min incubation of the sensitized cells with 0.01 micrograms/ml DNP-HSA in the absence of Ca2+ was sufficient to desensitize the cells completely. The treated cells failed to release a detectable amount of histamine upon incubation with an optimal concentration (0.1 to 1.0 micrograms/ml) of DNP-HSA and Ca2+. Determination of the number of antigen molecules bound to mast cells revealed that only a small (less than 10%) fraction of cell-bound IgE antibody molecules reacted with desensitizing antigen, and that desensitized cells and untreated (sensitized) cells could bind comparable amounts of antigen upon incubation with rechallenging antigen. However, the binding of antigen molecules to desensitized cells failed to induce any of the early biochemical events, i.e., phospholipid methylation, cAMP rise, and 45Ca uptake, as well as histamine release. It was also found that intracellular cAMP levels in desensitized cells were comparable to those in sensitized cells. Desensitization by a suboptimal concentration of DNP-HSA was prevented by inhibitors of methyltransferases, such as 3-deaza adenosine plus L-homocysteine thiolactone. Sensitized cells pretreated with 0.01 micrograms/ml DNP-HSA in the absence of Ca2+ and in the presence of the methyltransferase inhibitors responded to an optimal concentration of antigen for histamine release when they were rechallenged in the presence of Ca2+. Inhibition of desensitization by methyltransferase inhibitors was reversed by the addition of S-adenosyl-L-methionine to the system. The results indicated that the activation of methyltransferases, induced by receptor bridging, is involved in the process of desensitization. Desensitization was inhibited by reversible inhibitors of serine proteases, such as p-aminobenzamidine, indole, and synthesized substrates of rat mast cell proteases. It was also found that diisopropylfluorophosphate (DFP), an irreversible inhibitor of serine proteases, completely blocked desensitization at the concentration of 10 to 40 nM. This concentration of DFP did not affect the antigen-induced histamine release, whereas 100- to 1000-fold higher concentrations of DFP did inhibit histamine release. The results suggest that serine proteases are involved in both the induction of histamine release and desensitization, and that the protease involved in desensitization is distinct from that involved in triggering histamine release.  相似文献   

5.
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.  相似文献   

6.
Pretreatment of rat peritoneal mast cells, human basophils, bone marrow-derived mouse mast cells (BMMC) and mouse mast cell line PT-18 cells with 1 microgram/ml pertussis toxin (PT) failed to inhibit immunoglobulin E (IgE)-dependent histamine release from the cells. In BMMC and PT-18 cells, even 20-hr incubation of the cells with 1 microgram/ml PT, which ADP-ribosylates more than 97% of 41 kDa, alpha-subunit of Ni in the cells, failed to affect the IgE-dependent release of histamine or arachidonate. The results indicate that GTP-binding protein, Ni, is not involved in the transduction of triggering signals induced by cross-linking of IgE receptors. In contrast, pretreatment of rat mast cells with 1 ng/ml to 0.1 microgram/ml PT for 2 hr inhibited histamine release induced by compound 48/80 in a dose-dependent manner. A similar pretreatment with PT inhibited thrombin-induced histamine release from BMMC and N-formyl-L-methionyl-L-leucyl-L-phenylalanine-induced histamine release from human basophils in a similar dose-dependent fashion. However, even 20 hr of incubation of sensitized BMMC with 1 microgram/ml PT failed to inhibit either thrombin-induced or antigen-induced breakdown of phosphatidylinositides (PI), i.e., the formation of inositol triphosphate and diacylglycerol, Quin-2 signal, and the release of arachidonic acid. The results indicate that the inhibition of thrombin-induced histamine release by PT-treatment is not due to the inhibition of PI-turnover, and that Ni is not involved in thrombin-induced or antigen-induced (IgE-dependent) hydrolysis of phosphatidylinositides in mast cells.  相似文献   

7.
Cloning of the rat basophilic leukemia (RBL) cell lines demonstrates variability in cell chromosome number (approximately 44-70) and in their capacity to release histamine following an IgE- or Ca2+-ionophore stimulus. After IgE activation there is increased phospholipid methylation, Ca2+ influx, arachidonic acid, and histamine release. On Ca2+ ionophore A23187 stimulation, phospholipid methylation is not increased, but Ca2+ influx, arachidonic acid, and histamine release occur. Variants of the RBL-cloned sublines defective at different stages in the release process were obtained and used to sequence the different events in the release process: IgE activation is followed by methylation, Ca2+ influx, arachidonic acid, and histamine release. However, there are other variants with defects in intermediate steps in the pathway, e.g., increased phospholipid methylation that is not followed by Ca2+ influx or arachidonic acid release not followed by histamine release. Isolating variants carrying drug-resistance markers made hybridization (reconstitution) experiments possible. Two variants were recognized, each of which was deficient in one of the two phospholipid methyltransferase enzymes. Neither of these two variants released histamine; hybrids formed by fusion of these two cell lines have both phospholipid methyltransferase enzymes and release histamine. By other complementation experiments, groups of variants with defects at different steps in the histamine release sequence were recognized. Clearly, these basophilic leukemia cell lines provide a unique system for the study of the mechanism of histamine release.  相似文献   

8.
Accumulating evidence suggests that IgE-mediated activation of mast cells occurs even in the absence of antigen, which is referred to as "monomeric IgE" responses. Although monomeric IgE was found to induce a wide variety of responses, such as up-regulation of the FcepsilonRI, survival, cytokine production, histamine synthesis, and adhesion to fibronectin, it remains to be clarified how mast cells are activated in the absence of antigen. It has been controversial whether monomeric IgE responses are mediated by a similar signaling mechanism to antigen stimulation, although recent studies suggest that IgE can induce the FcepsilonRI aggregation even in the absence of antigen. In this study, we focused on the role of conventional protein kinase C (cPKC), since this response is suppressed by a specific inhibitor for cPKC. Monomeric IgE-induced Ca(2+) influx was not observed in a mouse mastocytoma cell line, which lacks the expression of PKCbetaII, although Ca(2+) influx induced by cross-linking of the FcepsilonRI was intact. Transfection of PKCbetaII cDNA was found to restore the Ca(2+) influx induced by monomeric IgE in this cell line. Furthermore, the dominant negative form of PKCbetaII (PKCbetaII/T500V) significantly suppressed the Ca(2+) influx, histamine synthesis, and interleukin-6 production in another mouse mast cell line, which is highly sensitive to monomeric IgE. Expression of PKCbetaII/T500V was found not to affect the antigen-induced responses. These results suggest that PKCbetaII plays a critical role in monomeric IgE responses, but not in antigen responses.  相似文献   

9.
IgE-mediated release of histamine from human cutaneous mast cells   总被引:1,自引:0,他引:1  
We investigated the ability of antigen-IgE interactions to stimulate histamine release from human infant cutaneous mast cells. Skin obtained at circumcision contained numerous perivascular mast cells, as assessed by light and electron microscopy. The histamine content of this tissue averaged 17.7 ng (+/- 1.5 SEM)/mg wet weight. Challenge of 200-microns thick sections of unsensitized skin with varying concentrations of monoclonal murine antibodies to human IgE caused no net release of histamine. After skin sections were incubated in the presence of 5 micrograms/ml of human myeloma IgE (S) for 120 min at 37 degrees C, monoclonal anti-IgE challenge resulted in 40.1% (+/- 6.0 SEM) histamine release. Similar passive sensitization with 1/20 dilutions of serum from humans expressing IgE to purified Juniperus sabinoides (JS) antigen rendered the tissue responsive to specific antigen challenge. Dose-related histamine release occurred over 30 min with optimal release of 12.6% (+/- 2.4 SEM) after stimulation with 100 ng/ml of JS antigen. This reaction required sensitization with serum containing IgE to JS and was antigen-specific. Optimal reactions to antigen occurred at 3 mM added Ca++, 34 degrees C to 37 degrees C, pH 7.2. Antigen-induced release was markedly influenced by the added Ca++ concentration; no release occurred in the absence of Ca++, 54% of the optimal response was observed at 2 mM Ca++, and 28% of the optimal response occurred at 4 mM Ca++. The addition of Mg++ did not influence antigen-induced release. The results of this study provide functional evidence that 1) human infant cutaneous mast cells express Fc-epsilon receptors; 2) these receptors are largely unoccupied in vivo; and 3) stimulation of passively sensitized infant mast cells with anti-IgE or specific antigen leads to immediate histamine release. This new system should permit detailed in vitro studies of immediate hypersensitivity reactions in human skin.  相似文献   

10.
Phospholipid metabolism in rat mast cells activated by antigen was examined with reference to phosphatidylinositol (PI) turnover. Upon antigen stimulation, histamine release from passively sensitized mast cells with IgE was potentiated by adding phosphatidylserine (PS). The addition of antigen to [3H]glycerol-prelabeled and sensitized mast cells induced a marked loss of radioactivity of PI and a concurrent accumulation of 1,2-diacylglycerol (DG) and phosphatidic acid (PA) within 5 to 60 sec. Furthermore, this antigen-induced PI breakdown was enhanced in the presence of Mg2+. Histamine release occurred in parallel with PI breakdown. On the other hand, the transient Ca2+ influx into mast cells, as measured by uptake of 45Ca2+, was found to occur quickly after cells were activated by antigen, which was concerted with PI breakdown. These results suggest that enhanced PI turnover may be an important step in the biochemical sequence of events leading to release of histamine, and that not only Ca2+ but also Mg2+ appears to take a part in stimulus-response coupling in rat mast cells.  相似文献   

11.
Ionophore A-23187 releases histamine from normal mast cells apparently by promoting Ca++ influx (Foreman et al, Nature 245: 249, 1973). In our hands at concentrations of greater than 0.2 mug/ml release occurs in 1 to 2 min, is blocked by metabolic inhibitors, and is unaccompanied by cytotoxicity (trypan-blue uptake, lactic dehydrogenase (LDH) release). At higher doses (0.5 mug/ml) histamine release is followed by significant cytotoxicity, but again Ca++ is required. In parallel studies, we examined cultured rat basophilic leukemia (RBL-1) cells. These cells, which apparently have normal surface receptors for IgE, contained approximately 700 ng histamine/10(6) cells but did not release histamine when IgE-mediated release was looked for. They do not respond to doses of ionophore which would be expected to give non-cytotoxic histamine release. At higher doses histamine release is preceded by progressive LDH release: LDH release is 75% complete at 5 min whereas 10 min are required for 75% maximal histamine release. This reaction requires Ca++ and is temperature dependent but is not inhibited by metabolic poisons (2-deoxyglucose, dinitrophenol, CN-). These studies suggest that either Ca++ does not enter into these cells normally or that one or more mechanisms which are ordinarily triggered by the changes in Ca++ flow are unresponsive in the RBL-1 cells. These studies also underline the importance of ruling out cytotoxicity in ionophore-induced phenomena.  相似文献   

12.
Mast cells play a critical role in the development of the allergic response. Upon activation by allergens and IgE via the high affinity receptor for IgE (Fc?RI), these cells release histamine and other functional mediators that initiate and propagate immediate hypersensitivity reactions. Mast cells also secrete cytokines that can regulate immune activity. These processes are controlled, in whole or part, by increases in intracellular Ca(2+) induced by the Fc?RI. We show here that N-(4-(3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl)phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2), a pyrazole derivative, inhibits activation-induced Ca(2+) influx in the rat basophil cell line RBL-2H3 and in bone marrow-derived mast cells (BMMCs), without affecting global tyrosine phosphorylation of cellular proteins or phosphorylation of the mitogen-activated protein kinases Erk1/2, JNK and p38. BTP2 also inhibits activation-induced degranulation and secretion of interleukin (IL)-2, IL-3, IL-4, IL-6, IL-13, tumor necrosis factor (TNF)-α, and granulocyte macrophage-colony stimulating factor (GM-CSF) by BMMCs, which correlates with the inhibition of Nuclear Factor of Activated T cells (NFAT) translocation. In vivo, BTP2 inhibits antigen-induced histamine release. Structure-activity relationship analysis indicates that substitution at the C3 or C5 position of the pyrazole moiety on BTP2 (5-trifluoromethyl-3-methyl-pyrazole or 3-trifluoromethyl-5-methyl-pyrazole, respectively) affected its activity, with the trifluoromethyl group at the C3 position being critical to its activity. We conclude that BTP2 and related compounds may be potent modulators of mast cell responses and potentially useful for the treatment of symptoms of allergic inflammation.  相似文献   

13.
A mouse spleen-derived mast cell line (PT-18) was employed to examine the mechanisms of adenosine 3':5'-monophosphate (cAMP)-mediated inhibition of antigen-induced lipid mediator biosynthesis. Specifically, we tested the hypothesis that increasing cAMP in mast cells inhibits lipid mediator biosynthesis by a mechanism independent of effects on histamine release (degranulation) or changes in cytosolic calcium concentration. Forskolin inhibited antigen-induced prostaglandin D2 (PGD2), leukotriene C4 (LTC4), and leukotriene B4 (LTB4) production by 30-50%. In contrast, forskolin had no inhibitory effect on antigen-induced increases in cytosolic calcium concentration, as monitored by the calcium indicator fura-2, or histamine release from the cells. The combination of the phosphodiesterase inhibitor isobutylmethylxanthine with forskolin inhibited the antigen-induced production of PGD2 and LTC4 by 90-100% and histamine release by about 60%. These responses were accompanied by a virtual abolition of the antigen-induced increase in cytosolic calcium. To test further the hypothesis that increasing cAMP can lead to inhibition of lipid mediator biosynthesis in the absence of effects on cytosolic calcium, we employed the calcium ionophores A23187 and ionomycin. Forskolin alone or in combination with isobutylmethylxanthine had no effect on ionophore-induced increases in cytosolic calcium but effectively inhibited leukotriene biosynthesis. In addition, increasing cyclic AMP led to an inhibition of ionophore-induced production of platelet-activating factor and liberation of arachidonic acid. These data suggest that a relatively modest increase in cAMP-dependent protein kinase activity in mast cells leads to inhibition of the lipase-catalyzed cleavage of arachidonic acid from membrane phospholipids in the absence of measurable effects on either histamine release or changes in cytosolic calcium concentration. This effect results in a selective inhibition of the biosynthesis of lipid mediators including LTC4, LTB4, PGD2, and platelet-activating factor.  相似文献   

14.
The 1,4-dihydropyridines (DHP) are calcium antagonists and represent a new class of drugs which act by a selective inhibition of Ca++ influx through voltage-operated calcium channels. We report the effect of nifedipine (Bay A 1040), nisoldipine (Bay K 5552) and nitrendipine (Bay E 5009) on the histamine release and on the 45Ca uptake promoted by 4-aminopyridin in mast cells. These cells treated with DHP (10(-12)-10(-3) M) activated the secretory response in a dose-dependent manner in the range of concentrations 10(-6)-10(-3) M, whereas concentrations of 10(-12)-10(-6) M did not significantly inhibit the secretion. 4-Aminopyridin, a known K+ -channel blocker, induced 45Ca uptake. Pretreatment of mast cells with DHP prior to 4-aminopyridin stimulation inhibited or stimulated 45Ca uptake depending on concentration; thus, concentrations of DHP below 10(-12) of nitrendipine and 10(-9) for nisoldipine and nifedipine were inhibitory, while higher doses potentiated 45Ca uptake. These results demonstrate a diversity of pharmacological effects of DHP on mediator secretion and 45Ca uptake in mast cells and throw into question their only properties as Ca++ antagonists.  相似文献   

15.
K Saeki  S Ikeda  M Nishibori 《Life sciences》1983,32(26):2973-2980
When added to Ca2+-free Hanks' solution, Ca2+ (0.1-2.5 mM) had no significant effect on antigen-induced histamine release from rat mast cells, but Sr2+ (1.0-3.0 mM) dose-dependently increased the release. Ba2+ (1.0 and 2.0 mM) also enhanced the release. Ca2+ and Ba2+ inhibited compound 40/80-induced histamine release, in a dose-dependent manner. In ordinary Hanks' medium, theophylline and 3-isobutyl-1-methylxanthine (IBMX) dose-dependently inhibited the antigen-induced histamine release but these drugs were ineffective in Ca2+-free medium. Theophylline (1.0 mM) also inhibited compound 48/80-induced histamine release in the presence but not absence of Ca2+. There was an optimal Ca2+ concentration for the theophylline effect. Sr2+ but not Ba2+ could substitute for Ca2+ in supporting the theophylline effect. Theophylline (1.0 mM) and IBMX (1.0 mM) increased mast cell cyclic AMP levels both in the presence and absence of Ca2+. These results suggest that Ca2+ is required in the interaction of theophylline and specific sites on mast cells or in the mast cell response to theophylline which probably does not involve the cyclic AMP increase and is linked to the inhibition of histamine release.  相似文献   

16.
Rat mast cells and bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE mAb, and permeabilized by ATP to introduce guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) and/or guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) into the cells. After ATP-induced lesions were resealed with Mg2+, the cells were challenged by Ag to determine the effect of the nonhydrolyzable guanosine phosphate on Ag-induced hydrolysis of phosphoinositides and histamine release. Introduction of GTP gamma S into permeabilized rat mast cells or BMMC, followed by exposure of the cells to extracellular Ca2+, resulted in histamine release, but failed to induce hydrolysis of phosphoinositides. It was also found that introduction of GTP gamma S into the cells did not synergistically enhance Ag-induced histamine release. Introduction of GDP beta S into sensitized BMMC inhibited the GTP gamma S-dependent, Ca2+-induced histamine release but failed to inhibit Ag-induced histamine release. The results suggest that GTP gamma S-dependent, Ca2+-induced histamine release and Ag-induced histamine release go through independent biochemical pathways. It was also found that introduction of GTP gamma S or GDP beta S into sensitized BMMC neither enhanced nor inhibited Ag-induced formation of inositol phosphates. These results together with previous findings that pretreatment of BMMC with either pertussis toxin or cholera toxin does not affect Ag-induced hydrolysis of phosphoinositides, indicate that a G protein is not involved in the transduction of IgE-mediated triggering signals to phospholipase C in rodent mast cells.  相似文献   

17.
The IgE-mediated histamine release from mouse mast cells requires Ca++, is optimal at 37 degrees C, and is enhanced by phosphatidylserine. The rate of release is relatively slow. The mast cells can be activated to release histamine by either anti-IgE or anti-Fab antibodies and, in the case of cells from sensitized mice, by the immunizing antigen. The incubation of mast cells with antigen in the absence of Ca++ or phosphatidylserine fails to release histamine. Such cells are desensitized to the further addition under optimal conditions of the same antigen. Desensitization is antigen specific, requires optimal levels of antigen, and occurs at both 30 degrees and 37 degrees C. In contrast, anti-IgE desensitizes all IgE-mediated histamine release reactions.  相似文献   

18.
Cultured murine mastocytoma (AB-CBF1-MCT-1) cells were stimulated to release endogenous or incorporated histamine or serotonin by an IgE-mediated mechanisms without loss of viability. Stimulation was achieved by incubation of the cells with rat IgE-anti-IgE, rat IgE-anti-light chain, fluoresceinated rat IgE-anti-fluorescein, IgE-enriched mouse anti-ovalbumin-ovalbumin, or covalently linked dimers of rat IgE, at doses similar to those optimal for normal peritoneal mast cells. Active cell metabolism and Ca++ were required to obtain release. Despite the latter, no dose of the calcium ionophore, A23187, could be found which caused release without concomitant cytotoxicity. Phosphatidylserine did not enhance release.  相似文献   

19.
Mangostin, Garcinia mangostana L. is used as a traditional medicine in southeast Asia for inflammatory and septic ailments. Hitherto we indicated the anticancer activity induced by xanthones such as alpha-, beta-, and gamma-mangostin which were major constituents of the pericarp of mangosteen fruits. In this study, we examined the effect of xanthones on cell degranulation in rat basophilic leukemia RBL-2H3 cells. Antigen (Ag)-mediated stimulation of high affinity IgE receptor (FcepsilonRI) activates intracellular signal transductions resulting in the release of biologically active mediators such as histamine. The release of histamine and other inflammatory mediators from mast cell or basophils is the primary event in several allergic responses. These xanthones suppressed the release of histamine from IgE-sensitized RBL-2H3 cells. In order to reveal the inhibitory mechanism of degranulation by xanthones, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas. All the xanthones tested significantly suppressed the signaling involving Syk and PLCgammas. In Ag-mediated activation of FcepsilonRI on mast cells, three major subfamilies of mitogen-activated protein kinases were activated. The xanthones decreased the level of phospho-ERKs. Furthermore, the levels of phospho-ERKs were observed to be regulated by Syk/LAT/Ras/ERK pathway rather than PKC/Raf/ERK pathway, suggesting that the inhibitory mechanism of xanthones was mainly due to suppression of the Syk/PLCgammas/PKC pathway. Although intracellular free Ca(2+) concentration ([Ca(2+)](i)) was elevated by FcepsilonRI activation, it was found that alpha- or gamma-mangostin treatment was reduced the [Ca(2+)](i) elevation by suppressed Ca(2+) influx.  相似文献   

20.
Immune aggregate-induced histamine release and desensitization were studied in mouse mast cells. Maximal histamine release was rapid, occurred at 37 degrees C, and required the addition of alpha-L-phosphatidyl-L-serine and Ca2+. The amount of histamine released varied with the composition of the immune aggregates and was dependent on the antibody concentration. Saturation of mast cell Fc epsilon receptors with rat or mouse IgE had no effect on subsequent immune aggregate-induced release. The incubation of mouse mast cells with immune aggregates in the absence of cations of alpha-L-phosphatidyl-L-serine did not stimulate the release of histamine but resulted in desensitization of the cells for release with the addition of the same or unrelated immune aggregates. Such cells are capable, however, of IgE-mediated histamine release. Mast cells desensitized for IgE-mediated histamine release by incubation with anti-IgE were capable of immune aggregate-induced release. These data suggest that IgE-mediated and immune aggregate-induced triggering of mouse mast cells occurs through separate receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号