首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TSG-6 is an inflammation-associated hyaluronan (HA)-binding protein that has anti-inflammatory and protective functions in arthritis and asthma as well as a critical role in mammalian ovulation. The interaction between TSG-6 and HA is pH-dependent, with a marked reduction in affinity on increasing the pH from 6.0 to 8.0. Here we have investigated the mechanism underlying this pH dependence using a combined approach of site-directed mutagenesis, NMR, isothermal titration calorimetry and microtiter plate assays. Analysis of single-site mutants of the TSG-6 Link module indicated that the loss in affinity above pH 6.0 is mediated by the change in ionization state of a histidine residue (His(4)) that is not within the HA-binding site. To understand this in molecular terms, the pH-dependent folding profile and the pK(a) values of charged residues within the Link module were determined using NMR. These data indicated that His(4) makes a salt bridge to one side-chain oxygen atom of a buried aspartate residue (Asp(89)), whereas the other oxygen is simultaneously hydrogen-bonded to a key HA-binding residue (Tyr(12)). This molecular network transmits the change in ionization state of His(4) to the HA-binding site, which explains the loss of affinity at high pH. In contrast, simulations of the pH affinity curves indicate that another histidine residue, His(45), is largely responsible for the gain in affinity for HA between pH 3.5 and 6.0. The pH-dependent interaction of TSG-6 with HA (and other ligands) provides a means of differentially regulating the functional activity of this protein in different tissue microenvironments.  相似文献   

2.
Subunit KtrA of the bacterial Na(+)-dependent K(+)-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K(+) transporters and K(+) channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His(10)-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding beta-alpha-beta-fold ("Rossman fold"). Photocross-linking and flow dialysis were used to determine the binding of [(32)P]ATP and [(32)P]NAD(+) to His(10)-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the (32)P-labeled nucleotides to the protein. [gamma-(32)P]ATP bound with high affinity to His(10)-VaKtrA (K(D) of 9 microm). All other nucleotides tested exhibited K(D) (K(i)) values of 30 microm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K(+)-translocating partner, VaKtrB-His(6), as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His(6) bound to Ni(2+)-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable.  相似文献   

3.
AmpC beta-lactamase is a bacterial enzyme with great clinical impact as it mediates beta-lactam antibiotic resistance in many Gram-negative bacteria. To facilitate the structure-function relationship studies on this clinically important enzyme, we developed new strategies for production of recombinant Enterobacter cloacae P99 AmpC beta-lactamase in Bacillus subtilis. With the utilization of a special thermo-inducible phi105 phage system, functionally active AmpC beta-lactamase was expressed in B. subtilis, either in an extracellular native form or an intracellular N-terminal (His)(6)-tagged form. A higher expression level was achieved when expressing the enzyme as the intracellular (His)(6)-tagged protein rather than as the extracellular native protein. In addition, from the approach of producing intracellular tagged protein, highly pure (>95%) (His)(6)-tagged beta-lactamase wild-type and mutants (Y150C and K315C) were obtained after a one-step nickel affinity chromatography with a yield of 28.5, 66, and 0.85 mg/L of culture, respectively. Furthermore, the Y150C and K315C mutants were characterized so as to investigate the roles of the conserved residues, Tyr150 and Lys315, in the AmpC beta-lactamase. Severe impairment in hydrolytic abilities and restored secondary structures of the Y150C and K315C mutants suggested the major contribution of these two residues in the catalytic reaction rather than the structural framework in the AmpC enzyme.  相似文献   

4.
Accurate random coil alpha-proton chemical shift values are essential for precise protein structure analysis using chemical shift index (CSI) calculations. The current study determines the chemical shift effects of pH, urea, peptide length and neighboring amino acids on the alpha-proton of Ala using model peptides of the general sequence GnXaaAYaaGn, where Xaa and Yaa are Leu, Val, Phe, Tyr, His, Trp or Pro, and n = 1-3. Changes in pH (2-6), urea (0-1M), and peptide length (n = 1-3) had no effect on Ala alpha-proton chemical shifts. Denaturing concentrations of urea (8M) caused significant downfield shifts (0.10 +/- 0.01 ppm) relative to an external DSS reference. Neighboring aliphatic residues (Leu, Val) had no effect, whereas aromatic amino acids (Phe, Tyr, His and Trp) and Pro caused significant shifts in the alanine alpha-proton, with the extent of the shifts dependent on the nature and position of the amino acid. Smaller aromatic residues (Phe, Tyr, His) caused larger shift effects when present in the C-terminal position (approximately 0.10 vs. 0.05 ppm N-terminal), and the larger aromatic tryptophan caused greater effects in the N-terminal position (0.15 ppm vs. 0.10 C-terminal). Proline affected both significant upfield (0.06 ppm, N-terminal) and downfield (0.25 ppm, C-terminal) chemical shifts. These new Ala correction factors detail the magnitude and range of variation in environmental chemical shift effects, in addition to providing insight into the molecular level interactions that govern protein folding.  相似文献   

5.
The N-terminal domain of NrtC, the ATP-binding subunit of nitrate/nitrite ABC-transporter in the cyanobacterium Phormidium laminosum, has been expressed in Escherichia coli as a histidine-tagged fusion protein (His(6)NrtC1). Binding of ATP to the pure His(6)NrtC1 was characterized using the nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate]. Fluorescence assays showed that His(6)NrtC1 specifically binds Mg(2+) TNP-ATP with high affinity, binding being dependent on protein concentration. The presence of ATP prevents the covalent modification of His(6)NrtC1 by fluorescein 5'-isothiocyanate (FITC), suggesting that this probe reacts at the nucleotide-binding site of NrtC. The active form of the truncated NrtC is a dimer that shows high affinity for TNP-ATP (K(d)=0.76+/-0.1 microM). Evidence for the presence of two nucleotide-binding sites per dimer protein is given. Our results indicate that nucleotide binding is strongly dependent on the dimerization of NrtC and that the N-terminal domain of the protein contains the binding site for ATP. No ATPase activity catalyzed in vitro by the truncated subunit was detected.  相似文献   

6.
The hydroxynitrile lyase from Hevea brasiliensis (HbHNL) uses a catalytic triad consisting of Ser(80)-His(235)-Asp(207) to enhance the basicity of Ser(80)-O gamma for abstracting a proton from the OH group of the substrate cyanohydrin. Following the observation of a relatively short distance between a carboxyl oxygen of Asp(207) and the N delta(1)(His(235)) in a 1.1 A crystal structure of HbHNL, we here show by (1)H and (15)N-NMR spectroscopy that a short, strong hydrogen bond (SSHB) is formed between the two residues upon binding of the competitive inhibitor thiocyanate to HbHNL: the proton resonance of H-N delta 1(His(235)) moves from 15.41 ppm in the free enzyme to 19.35 ppm in the complex, the largest downfield shift observed so far upon inhibitor binding. Simultaneously, the D/H fractionation factor decreases from 0.98 to 0.35. In the observable pH range, i.e. between pH 4 and 10, no significant changes in chemical shifts (and therefore hydrogen bond strength) were observed for free HbHNL. For the complex with thiocyanate, the 19.35 ppm signal returned to 15.41 ppm at approximately pH 8, which indicates a pK(a) near this value for the H-N epsilon(2)(His(235)). These NMR results were analyzed on the basis of finite difference Poisson-Boltzmann calculations, which yielded the relative free energies of four protonation states of the His(235)-Asp(207) pair in solution as well as in the protein environment with and without bound inhibitor. The calculations explain all the NMR features, i.e. they suggest why a short, strong hydrogen bond is formed upon inhibitor binding and why this short, strong hydrogen bond reverts back to a normal one at approximately pH 8. Importantly, the computations also yield a shift of the free energy of the anionic state relative to the zwitterionic reference state by about 10.6 kcal/mol, equivalent to a shift in the apparent pK(a) of His(235) from 2.5 to 10. This huge inhibitor-induced increase in basicity is a prerequisite for His(235) to act as general base in the HbHNL-catalyzed cyanohydrin reaction.  相似文献   

7.
Muradov KG  Artemyev NO 《Biochemistry》2000,39(14):3937-3942
The N-terminal regions of the heterotrimeric G-protein alpha-subunits represent one of the major Gbetagamma contact sites and have been implicated in an interaction with G-protein-coupled receptors. To probe the role of the N-terminal domain of transducin-alpha in G-protein function, a chimeric Gtialpha subunit with the 31 N-terminal Gtalpha residues replaced by the corresponding 42 residues of Gsalpha (Ns-Gtialpha) has been examined for the interaction with light-activated rhodopsin (R). Gtialpha displayed a somewhat higher R-stimulated rate of GTPgammaS binding relative to Ns-Gtialpha, suggesting modest involvement of the Gtalpha N-terminal sequence in recognition of the receptor. However, the intrinsic rate of nucleotide exchange in Ns-Gtialpha was significantly faster (k(app) = 0.014 min(-)(1)) than that in Gtialpha (k(app) = 0.0013 min(-1)) as judged by the GTPgammaS binding rates. Substitution of 42 N-terminal residues of Gsalpha by the Gtalpha residues in a reciprocal chimera, Nt-Gsalpha, had an opposite effect-notable reduction in the intrinsic GTPgammaS-binding rate (k(app) = 0.0075 min(-)(1)) in comparison with Gsalpha (k(app) = 0.028 min(-)(1)). Residue Val30 (His41 in Gsalpha) within the N-terminal region of Gtalpha interacts with the C-terminal residue, Ile339. To test the hypothesis that observed changes in the intrinsic nucleotide exchange rate in chimeric Galpha subunits might be attributed to this interaction, GtialphaVal30His, GtialphaIle339Ala, and Ns-GtialphaHis41Val mutants have been made and analyzed for basal GTPgammaS binding. GtialphaVal30His and GtialphaIle339Ala had increased GTPgammaS binding rates (k(app) = 0. 010 and 0.009 min(-)(1), respectively), whereas Ns-GtialphaHis41Val had a decreased GTPgammaS binding rate (k(app) = 0.0011 min(-)(1)) relative to their parent proteins. These results suggest that the coupling between the N-terminal and C-terminal domains of Gtalpha is important for maintaining a low nucleotide exchange rate in unstimulated transducin.  相似文献   

8.
The role of the ferroxidase center in iron uptake and hydrogen peroxide detoxification was investigated in Listeria innocua Dps by substituting the iron ligands His31, His43, and Asp58 with glycine or alanine residues either individually or in combination. The X-ray crystal structures of the variants reveal only small alterations in the ferroxidase center region compared to the native protein. Quenching of the protein fluorescence was exploited to assess stoichiometry and affinity of metal binding. Substitution of either His31 or His43 decreases Fe(II) affinity significantly with respect to wt L. innocua Dps (K approximately 10(5) vs approximately 10(7) M(-)(1)) but does not alter the binding stoichiometry [12 Fe(II)/dodecamer]. In the H31G-H43G and H31G-H43G-D58A variants, binding of Fe(II) does not take place with measurable affinity. Oxidation of protein-bound Fe(II) increases the binding stoichiometry to 24 Fe(III)/dodecamer. However, the extent of fluorescence quenching upon Fe(III) binding decreases, and the end point near 24 Fe(III)/dodecamer becomes less distinct with increase in the number of mutated residues. In the presence of dioxygen, the mutations have little or no effect on the kinetics of iron uptake and in the formation of micelles inside the protein shell. In contrast, in the presence of hydrogen peroxide, with increase in the number of substitutions the rate of iron oxidation and the capacity to inhibit Fenton chemistry, thereby protecting DNA from oxidative damage, appear increasingly compromised, a further indication of the role of ferroxidation in conferring peroxide tolerance to the bacterium.  相似文献   

9.
T Miura  A Hori-i  H Mototani  H Takeuchi 《Biochemistry》1999,38(35):11560-11569
The cellular form of prion protein is a precursor of the infectious isoform, which causes fatal neurodegenerative diseases through intermolecular association. One of the characteristics of the prion protein is a high affinity for Cu(II) ions. The site of Cu(II) binding is considered to be the N-terminal region, where the octapeptide sequence PHGGGWGQ repeats 4 times in tandem. We have examined the Cu(II) binding mode of the octapeptide motif and its pH dependence by Raman and absorption spectroscopy. At neutral and basic pH, the single octapeptide PHGGGWGQ forms a 1:1 complex with Cu(II) by coordinating via the imidazole N pi atom of histidine together with two deprotonated main-chain amide nitrogens in the triglycine segment. A similar 1:1 complex is formed by each octapeptide unit in (PHGGGWGQ)2 and (PHGGGWGQ)4. Under weakly acidic conditions (pH approximately 6), however, the Cu(II)-amide- linkages are broken and the metal binding site of histidine switches from N pi to N tau to share a Cu(II) ion between two histidine residues of different peptide chains. The drastic change of the Cu(II) binding mode on going from neutral to weakly acidic conditions suggests that the micro-environmental pH in the brain cell regulates the Cu(II) affinity of the prion protein, which is supposed to undergo pH changes in the pathway from the cell surface to endosomes. The intermolecular His(N tau)-Cu(II)-His(N tau) bridge may be related to the aggregation of prion protein in the pathogenic form.  相似文献   

10.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

11.
It has been claimed that beta2-microglobulin (beta2-m) interacts with type I and type II collagen, and this property has been linked to the tissue specificity of the beta2-m amyloid deposits that target the osteo-articular system. The binding parameters of the interaction between collagen and beta2-m were determined by band shift electrophoresis and surface plasma resonance by using bovine collagen of type I and type II and various isoforms of beta2-m. Wild-type beta2-m binds collagen type I with a Kd of 4.1 x 10(-4) M and type II with 2.3 x 10(-3) M. By the BIAcore system we monitored the binding properties of the conformers of the slow phase of folding of beta2-m. The folding intermediates during the slow phase of folding do not display any significant difference with respect to the binding properties of the fully folded molecule. The affinity of beta2-m truncated at the third N-terminal residue does not differ from that reported for the wild-type protein. Increased affinity for collagen type I is found in the case of N-terminal truncated species lacking of six residues. The Kd of this species is 3.4 x 10 (-5) M at pH 7.4 and its affinity increases to 4.9 x 10(-6) M at pH 6.4. Fluctuations of the affinity caused by beta2-m truncation and pH change can cause modifications of protein concentration in the solvent that surrounds the collagen, and could contribute to generate locally a critical protein concentration able to prime the protein aggregation.  相似文献   

12.
The purpose of this study was to characterize in detail the binding of pediocin PA-1 and its fragments to target membranes by using tryptophan fluorescence as a probe. Based on a three-dimensional model (Y. Chen, R. Shapira, M. Eisenstein, and T. J. Montville, Appl. Environ. Microbiol. 63:524-531, 1997), four synthetic N-terminal pediocin fragments were selected to study the mechanism of the initial step by which the bacteriocin associates with membranes. Binding of pediocin PA-1 to vesicles of phosphatidylglycerol, the major component of Listeria membranes, caused an increase in the intrinsic tryptophan fluorescence intensity with a blue shift of the emission maximum. The Stern-Volmer constants for acrylamide quenching of the fluorescence of pediocin PA-1 in buffer and in the lipid vesicles were 8.83 +/- 0.42 and 3.53 +/- 0.67 M-1, respectively, suggesting that the tryptophan residues inserted into the hydrophobic core of the lipid bilayer. The synthetic pediocin fragments bound strongly to the lipid vesicles when a patch of positively charged amino acid residues (K-11 and H-12) was present but bound weakly when this patch was mutated out. Quantitative comparison of changes in tryptophan fluorescence parameters, as well as the dissociation constants for pediocin PA-1 and its fragments, revealed that the relative affinity to the lipid vesicles paralleled the net positive charge in the peptide. The relative affinity for the fragment containing the YGNGV consensus motif was 10-fold lower than that for the fragment containing the positive patch. Furthermore, changing the pH from 6.0 to 8.0 decreased binding of the fragments containing the positive patch, probably due to deprotonation of His residues. These results demonstrate that electrostatic interactions, but not the YGNGV motif, govern pediocin binding to the target membrane.  相似文献   

13.
Recombinant yeast ubiquitin C-terminal hydrolase (YUH1), which has an N-terminal (His)(6) tag, and an autolysis-resistant mutant of the human immunodeficiency virus-1 protease (HIV-1 Pr) have been used as specific proteases to yield peptides from a ubiquitin conjugate. In the present example, connective tissue-activating peptide (CTAPIII) and neutrophil-activating peptide 2 (NAP/2) were generated by digestion of a ubiquitin-CTAPIII conjugate with YUH1 and HIV Pr, respectively, as indicated below: [see text] YUH1 cleaved at the peptide bond formed by the C-terminal Gly(76) of ubiquitin (Ub) and the N-terminal Asn(1) of the 85-residue peptide CTAPIII. The HIV-1 Pr cleaved between Tyr(15) and Ala(16), the N-terminal Ala of the 70-residue peptide NAP/2. Both enzymes produced authentic peptides from the Ub fusion protein, with a nearly 100% yield. The liberated CTAPIII and NAP/2 were separated from (His)(6)-Ub, the trace amounts of unreacted (His)(6)-Ub-CTAPIII, HIV-1 Pr, and the (His)(6)-YUH1 by passage over a nickel-chelate column; the final yield was about 10 mg of peptide/liter of cell culture. (His)(6)-YUH1, the HIV Pr mutant, and the (His)(6)-Ub-CTAPIII substrate were all expressed individually in Escherichia coli. (His)(6)-YUH1 and (His)(6)-Ub-CTAPIII were highly expressed in a soluble form, but about 75% of the total (His)(6)-YUH1 was also found in inclusion bodies. Both proteins from the soluble fractions were easily purified in a single step by immobilized metal ion affinity chromatography with a yield of about 27 mg of (His)(6)-Ub-CTAPIII and 13.6 mg of (His)(6)-YUH1 protein/liter of cell culture. Chemotactic factor activity, as assessed by the neutrophil shape change assay, was observed for NAP/2, but not for CTAPIII. This strategy, which employs YUH1 and the HIV-1 Pr as tools for the highly selective cleavage of the chimeric substrate, should be applicable to the large-scale production of a variety of peptides.  相似文献   

14.
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Ubr1p, the recognition (E3) component of the Saccharomyces cerevisiae N-end rule pathway, contains at least two substrate-binding sites. The type 1 site is specific for N-terminal basic residues Arg, Lys, and His. The type 2 site is specific for N-terminal bulky hydrophobic residues Phe, Leu, Trp, Tyr, and Ile. Previous work has shown that dipeptides bearing either type 1 or type 2 N-terminal residues act as weak but specific inhibitors of the N-end rule pathway. We took advantage of the two-site architecture of Ubr1p to explore the feasibility of bivalent N-end rule inhibitors, whose expected higher efficacy would result from higher affinity of the cooperative (bivalent) binding to Ubr1p. The inhibitor comprised mixed tetramers of beta-galactosidase that bore both N-terminal Arg (type 1 residue) and N-terminal Leu (type 2 residue) but that were resistant to proteolysis in vivo. Expression of these constructs in S. cerevisiae inhibited the N-end rule pathway much more strongly than the expression of otherwise identical beta-galactosidase tetramers whose N-terminal residues were exclusively Arg or exclusively Leu. In addition to demonstrating spatial proximity between the type 1 and type 2 substrate-binding sites of Ubr1p, these results provide a route to high affinity inhibitors of the N-end rule pathway.  相似文献   

15.
The physiological functions of hyaluronan (HA) in the extracellular matrix of vertebrate tissues involve a range of specific protein interactions. In this study, the interaction of HA with the Link module from TSG-6 (Link_TSG6) and G1 domain of aggrecan (G1), were investigated by a biophysical analysis of translational diffusion in dilute solution using confocal fluorescence recovery after photobleaching (confocal FRAP). Both Link_TSG6 and G1 were shown to bind to polymeric HA and these interactions could be competed with HA(8) and HA(10) oligosaccharides, respectively. Equilibrium experiments showed that the binding affinity of Link_TSG6 to HA was maximal at pH 6.0, and reduced dramatically above and below this pH. In contrast, G1 had maximum binding at pH 7.0-8.0 and moderate to strong binding affinity over a much broader pH range (5.5-8.0). The K(D) determined for Link_TSG6 binding to HA showed a 100-fold increase in binding affinity between pH 7.4 and 6.0, whereas G1 showed a 75-fold decrease in binding affinity over the same pH range. The sharp difference observed in their pH binding suggests that pH controls the physiological function of TSG-6, with a low affinity for HA at neutral pH, but with increased affinity as the pH falls below pH 7. TSG-6 and aggrecan interact with HA through structurally homologous domains and the difference in pH-dependent binding can be understood in terms of differences in the presence and topographical distribution of key regulatory amino acids in Link_TSG6 and in the related tandem Link domains in aggrecan G1.  相似文献   

16.
The binding of alpha/beta-type small, acid-soluble spore proteins (SASP) to DNA of spores of Bacillus species is the major determinant of DNA resistance to a variety of damaging treatments. The primary sequence of alpha/beta-type SASP is highly conserved; however, the N-terminal third of these proteins is less well conserved than the C-terminal two-thirds. To determine the functional importance of residues in the N-terminal region of alpha/beta-type SASP, variants of SspC (a minor alpha/beta-type SASP from Bacillus subtilis) with modified N termini were generated and their structural and DNA binding properties studied in vitro and in vivo. SspC variants with deletions of up to 14 residues ( approximately 20% of SspC residues) were able to bind DNA in vitro and adopted similar conformations when bound to DNA, as determined by circular dichroism spectroscopy and protein-protein cross-linking. Progressive deletion of up to 11 N-terminal residues resulted in proteins with progressively lower DNA binding affinity. However, SspC(Delta)(14) (in which 14 N-terminal residues have been deleted) showed significantly higher affinity for DNA than the larger proteins, SspC(Delta)(10) and SspC(Delta)(11). The affinity of these proteins for DNA was shown to be largely dependent upon the charge of the first few N-terminal residues. These results are interpreted in the context of a model for DNA-dependent alpha/beta-type SASP protein-protein interaction involving the N-terminal regions of these proteins.  相似文献   

17.
18.
A comparative study of the rates of ferrocyanide-catalyzed oxidation of several oxymyoglobins by molecular oxygen is reported. Oxidation of the native oxymyoglobins from sperm whale, horse and pig, as well as the chemically modified (MbO(2)) sperm whale oxymyoglobin, with all accessible His residues alkylated by sodium bromoacetate (CM-MbO(2)), and the mutant sperm whale oxymyoglobin [MbO(2)(His119-->Asp)], was studied. The effect of pH, ionic strength and the concentration of anionic catalyst ferrocyanide, [Fe(CN)(6)](4-), on the oxidation rate is investigated, as well as the effect of MbO(2) complexing with redox-inactive Zn(2+), which forms the stable chelate complex with functional groups of His119, Lys16 and Asp122, all located nearby. The catalytic mechanism was demonstrated to involve specific [Fe(CN)(6)](4-) binding to the protein in the His119 region, which agrees with a high local positive electrostatic potential and the presence of a cavity large enough to accommodate [Fe(CN)(6)](4-) in that region. The protonation of the nearby His113 and especially His116 plays a very important role in the catalysis, accelerating the oxidation rate of bound [Fe(CN)(6)](4-) by dissolved oxygen. The simultaneous occurrence of both these factors (i.e. specific binding of [Fe(CN)(6)](4-) to the protein and its fast reoxidation by oxygen) is necessary for the efficient ferrocyanide-catalyzed oxidation of oxymyoglobin.  相似文献   

19.
The effects of charged residues in peptide antigens on the binding characteristics of polyclonal antipeptide antibodies were studied using immunoadsorbents prepared by coupling the antibodies to CNBr-activated Sepharose 4B. Among the antipeptide antibodies, an antibody to the peptide without charged residues showed the most stable interaction with the peptide to the changes in pH. Conversely, the binding affinity of antibodies to the pep-tides with histidine residues having a unique pKa value of 6.0 decreased steeply with pH at around 6.0. The binding affinity of an antibody to the peptide with many charged residues decreased steeply with an increase in the ionic strength (adjusted by NaCl). Since circular dichroism (CD) spectrum measurements indicate that these peptides show disordered structures in the pH range of adsorption measurement, the dependence of peptide-antibody interaction on environmental conditions is attributed to the characteristics of side chains of the peptides. These results indicate that the dependence of the binding affinity of antipeptide antibodies on pH and the ionic strength is dominantly affected by the number and the pKa values of charged residues in the peptides.  相似文献   

20.
Islet amyloid deposits are a characteristic pathologic lesion of the pancreas in type 2 diabetes and are composed primarily of the islet beta cell peptide islet amyloid polypeptide (IAPP or amylin) as well as the basement membrane heparan sulfate proteoglycan perlecan. Impaired processing of the IAPP precursor has been implicated in the mechanism of islet amyloid formation. The N- and C-terminal cleavage sites where pro-IAPP is processed by prohormone convertases contain a series of basic amino acid residues that we hypothesized may interact with heparan sulfate proteoglycans. This possibility was tested using affinity chromatography by applying synthetic fragments of pro-IAPP to heparin-agarose and heparan sulfate-Sepharose. An N-terminal human pro-IAPP fragment (residues 1-30) was retained by both heparin-agarose and heparan sulfate-Sepharose, eluting at 0.18 m NaCl at pH 7.5. Substitution of alanine residues for two basic residues in the N-terminal cleavage site abolished heparin and heparan sulfate binding activity. At pH 5.5, the affinity of the wild-type peptide for heparin/heparan sulfate was increased, implying a role for histidine residues at positions 6 and 28 of pro-IAPP. A C-terminal pro-IAPP fragment (residues 41-67) had no specific affinity for either heparin or heparan sulfate, and the N- or C-terminal fragments had only weak affinity for chondroitin sulfate. These data suggest that monomeric N-terminal human pro-IAPP contains a heparin binding domain that is lost during normal processing of pro-IAPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号