首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marine macroorganisms are a potential source for new bioactive substances. In many cases marine microorganisms—especially bacteria—associated with these macroorganisms are actually producing the bioactive substances. One often is not able to immediately isolate microorganisms from collected macroorganismic materials; we therefore evaluated different methods for storage of such material, e.g., on board research vessels. These methods were the following: storage of macerates in sintered glass beads and 5% trehalose at −20°C (SGT method); storage of sections in 5% dimethyl sulfoxide at −70°C (SD method); storage of macerates at −20°C using the commercial ROTI-STORE system (RS method); storage of macerates at −20°C in 50% glycerol (GC method); and storage of macerates covered by mineral oil at 4°C (MO method). The SGT and SD methods resulted in numbers of and especially diversity of recoverable bacteria that were higher than for the other methods. Data for the RS method indicated its potential usefulness, too. The MO method resulted in growth during storage, thereby enriching a few selected microorganisms; the GC method resulted in a survival and diversity of recovered bacteria that was too low.  相似文献   

2.
Aim While ecologists have long been interested in diversity in mountain regions, elevational patterns in beta diversity are still rarely studied across different life forms ranging from micro‐ to macroorganisms. Also, it is not known whether the patterns in turnover among organism groups are affected by the degree to which the environment is modified by human activities. Location Laojun Mountain, Yunnan Province, China. Methods The beta diversity patterns of benthic microorganisms (i.e. diatoms and bacteria) and macroorganisms (i.e. macroinvertebrates) in a stony stream were simultaneously investigated between elevations of 1820 and 4050 m. Data were analysed by using a distance‐based approach and variation partitioning based on canonical redundancy analysis. Results Analyses of community dissimilarities between adjacent sampling sites showed comparable small‐scale beta diversity along the elevational gradient for the organism groups. However, bacteria clearly showed the lowest elevational turnover when analyses were conducted simultaneously for all pairwise sites. Variation partitioning indicated that species turnover was mostly related to environmental heterogeneity and spatial gradients including horizontal distance and elevation, while purely human impacts were shown to be less important. Main conclusions The elevational beta diversity at large scales was lower for bacteria than for eukaryotic microorganisms or macroorganisms, perhaps indicative of high dispersal ability and good adaptability of bacteria to harsh environmental conditions. However, the small‐scale beta diversity did not differ among the groups. Elevation was the major driver for the turnover of eukaryotic organisms, while the turnover of bacteria was correlated more with environmental variation.  相似文献   

3.
Thermophilic sulfate-reducing bacteria (SRB) oxidizing lactate, butyrate, and C12-C16 n-alkanes of oil at a temperature of 90 degrees C were isolated from samples of water and oil originating from oil reservoirs of the White Tiger high-temperature oil field (Vietnam). At the same time, no thermophiles were detected in the injected seawater, which contained mesophilic microorganisms and was the site of low-temperature processes of sulfate reduction and methanogenesis. Thermophilic SRB were also found in samples of liquid taken from various engineering reservoirs used for oil storage, treatment, and transportation. These samples also contained mesophilic SRB, methanogens, aerobic oil-oxidizing bacteria, and heterotrophs. Rates of bacterial production of hydrogen sulfide varied from 0.11-2069.63 at 30 degrees C and from 1.18-173.86 at 70 degrees C micrograms S/(1 day); and those of methane production, varied from 58.4-100 629.8 nl CH4/(1 day) (at 30 degrees C). The sulfur isotopic compositions of sulfates contained in reservoir waters and of hydrogen sulfide of the accompanying gas indicate that bacterial sulfate reduction might be effective in the depth of the oil field.  相似文献   

4.
5.
The numbers and types of microorganisms on fresh rock cod fillets and fillets stored in air or in a modified atmosphere (MA; 80% CO(2), 20% air) at 4 degrees C were compared. Samples were analyzed after 0, 7, 14, and 21 days of storage. The isolation plates were incubated aerobically, anaerobically, or under MA at 4, 20, or 35 degrees C. After 7 days of storage in air, the fillets were obviously spoiled and had a 3- to 4-log cycle increase in microbial counts. Plate counts increased more slowly on MA-stored fillets. After 21 days, the counts on the latter had increased only 2 log cycles, and the fillets did not seem spoiled. The microbial flora changed greatly during MA storage. Only Lactobacillus spp. (70%) and an Aeromonas sp.-like isolate (30%) were found on plates incubated aerobically at 4 and 20 degrees C, and only Lactobacillus spp. was found on plates incubated aerobically and anaerobically at 35 and at 20 degrees C under MA. Isolation plates incubated at 20 degrees C in air gave the highest counts in the shortest incubation time and the greatest diversity of bacterial types recovered. No Vibrio parahaemolyticus, Staphylococcus aureus, or Clostridium botulinum type E were isolated from the fresh or MA-stored fillets.  相似文献   

6.
Cryopreservation studies of Campylobacter   总被引:4,自引:0,他引:4  
C K Mills  R L Gherna 《Cryobiology》1988,25(2):148-152
Seven strains of Campylobacter fetus ss. fetus, one of Campylobacter fetus ss. venerealis, and one of Campylobacter jejuni were preserved using a variety of cryopreservation methods. Organisms were frozen to -150 degrees C in a liquid nitrogen refrigerator, in the freezer compartment of a refrigerator (-20 degrees C), and in a mechanical freezer (-65 degrees C). In the latter two cases, viabilities of the organisms were compared after being frozen in Brucella Albimi broth and 10% glycerol. Viabilities were also examined after Campylobacter species were freeze-dried using rapid or slow cooling, using sucrose or skim milk as cryoprotective agents and in bulb-type vials on a manifold or batch vials. Preservation in liquid nitrogen resulted in no loss in viability after 4 years storage. When Campylobacter species were frozen at -20 degrees C, no cells were recovered after 1 month storage in Brucella Albimi broth or seven months in glycerol. A 6.5 log decrease in viability resulted after organisms were frozen at -65 degrees and subsequently stored at the same temperature for 2 years. In this case, glycerol had no protective advantage over Brucella Albimi broth. Postpreservation viability of organisms cooled slowly was two logs higher than those cooled rapidly prior to freeze-drying. When skim milk or sucrose were employed as cryoprotective agents during freeze-drying, equal viabilities resulted. Equivalent viabilities were also demonstrated when the bulb type or "batch" vials were utilized for freeze-drying. No significant differences were observed between the viabilities of the three species when a given cryopreservation method was employed.  相似文献   

7.
The objective of this study was to investigate the preservation of spermatozoa in a simple medium without freezing and to examine the effects of the preserved sperm on fertilization and development after injection into mature mouse oocytes. Mouse spermatozoa were collected from two caudae epididymides of mature B6D2F1 males and stored under various conditions: 1) in KSOMaa medium (potassium simplex optimized medium with amino acids) supplemented with 0, 1, or 4 mg/ml BSA and held at room temperature (RT, 27 degrees C); 2) in KSOMaa medium containing 4 mg/ml BSA (KSOM-BSA) and held at 4 degrees C, RT, or 37 degrees C (CO2 incubator); 3) in KSOM-BSA with osmolarity ranging from 271 to 2000 mOsmol, adjusted by addition of NaCl and held at 4 degrees C; and 4) a two-step preservation system consisting of storage in 800 mOsmol KSOM-BSA for 1 wk at RT followed by storage at -20 degrees C. Preservation of mouse spermatozoa at 4 degrees C in a medium with high osmolarity (700-1000 mOsmol) resulted in the highest frequency of live births after intracytoplasmic sperm injection (ICSI) into mature oocytes. The optimal conditions for preservation of mouse spermatozoa were 800 mOsmol KSOM containing 4 mg/ml BSA and a holding temperature of 4 degrees C. More than 40% of oocytes injected with sperm heads stored under these conditions for 2 mo developed to the morula/blastocyst stage in vitro and 39% of the embryos developed to term after transfer to recipient mice. Our results also indicate that mouse spermatozoa can be stored in 800 mOsmol KSOM-BSA medium at RT for 1 wk and then at -20 degrees C for up to 3 mo and retain their competence for ICSI. These new preservation methods permit extended conservation of viable spermatozoa that are capable of supporting normal embryonic development and the live birth of healthy offspring after ICSI.  相似文献   

8.
Long-term preservation methods are important in the maintenance of bacteria for downstream research applications. Most clinical laboratories have only limited resources for archiving isolates and therefore require cost-effective and simple methods. An effective and cheap storage method using debrinated blood and maintenance at -80 degrees C is described.  相似文献   

9.
Long-time storage of faecal samples is necessary for investigations of intestinal microfloras. The aim of the present study was to evaluate how the viability and the composition of the Escherichia coli flora are affected in faecal samples during different storage conditions. Four fresh faecal samples (two from calves and two from infants) were divided into sub-samples and stored in four different ways: with and without addition of glycerol broth at -20 degrees C and at -70 degrees C. The viability and the phenotypic diversity of the E. coli flora in the sub-samples were evaluated after repeated thawings and after storage during 1 year. The samples stored for 1 year without thawing were also kept at room temperature for 5 days and subsequently analysed. According to phenotyping (PhP analysis) of 32 isolates per sample on day 0, all four samples contained two dominating strains of E. coli each, and between one and eight less common strains. Samples that were stored at -70 degrees C in glycerol broth showed equal or even higher bacterial numbers as the original samples, even after repeated thawings, whereas samples stored at -20 degrees C showed a considerably lower survival rate, also with addition of glycerol. Sub-samples containing glycerol broth that were kept at room temperature after storage for 1 year showed a clear increase in the number of viable cells as well as in diversity. The diversities in each sub-sample showed a tendency to decrease after several thawings as well as after storage. Generally, the E. coli populations in samples stored at -20 degrees C were less similar to the population of the original sample than that in samples stored at -70 degrees C. Samples that had been mixed with glycerol broth had an E. coli flora more similar to that in the original sample than those without glycerol broth. Furthermore, the sub-samples that were kept at room temperature after storage for 1 year generally were more similar to the original samples than if they were processed directly. We conclude that for long time storage of faecal samples, storage at -70 degrees C is preferable. If samples have to be thawed repeatedly, addition of glycerol is preferable both for samples stored at -70 degrees C and for samples stored at -20 degrees C. Our data also have indicated that when E. coli isolates from faecal samples are selected for, e.g. analysis of virulence factors, it is necessary to pick several isolates per sample in order to obtain at least one isolate representing the dominating strain(s).  相似文献   

10.
After the prolonged residence (from 1 month to 2 years) in flow soil columns at 6 - 8 degrees C and 18 - 20 degrees C a complex of ultrastructural changes was detected in Y. pseudotuberculosis bacteria, depending on temperature, the duration of residence in the soil and, to a definite extent, on the strain. They were manifested in the form of cell-wall changes, the formation of the capsule and intercellular slime, changes in the ribosomal saturation of cytoplasm and the conformation state of DNA in the nucleoid zone. As the result of adaptation to nutritional deficit storage substances were accumulated in the form of electron-dense inclusions (polyphosphates) and pseudovacuoles (poly-beta-oxibutyric acid). Temperature influenced the process of mitotic division and the state of chromatin in bacteria. The described ultrastructural changes Y. pseudotuberculosis may be regarded as natural adaptive reaction to the altered conditions of their residence.  相似文献   

11.
AIMS: Production of a nisin-containing cellophane-based coating to be used in the packaging of chopped meat. METHODS AND RESULTS: The adsorption of nisin to cellophane 'P' type surface was studied at 8, 25, 40 and 60 degrees C using different concentrations of nisin. Then, the antimicrobial activity of adsorbed nisin to cellophane surface was determined in fresh veal meat for effectiveness in reducing the total aerobic bacteria. The adsorption of nisin to cellophane was higher at 8 degrees C. The developed bioactive cellophane reduced significantly the growth of the total aerobic bacteria (by ca 1.5 log units) through 12 days of storage at 4 degrees C. CONCLUSIONS: Bioactive cellophane packaging could be used for controlling the microbial growth in chopped meat. SIGNIFICANCE AND IMPACT OF THE STUDY: Nisin-adsorbed bioactive cellophane would result in an extension of the shelf life of chopped meat under refrigeration temperatures.  相似文献   

12.
13.
Marine bacteria and fungi are of considerable importance as new promising sources of a huge number of biologically active products. Some of these marine species live in a stressful habitat, under cold, lightless and high pressure conditions. Surprisingly, a large number of species with high diversity survive under such conditions and produce fascinating and structurally complex natural products. Up till now, only a small number of microorganisms have been investigated for bioactive metabolites, yet a huge number of active substances with some of them featuring unique structural skeletons have been isolated. This review covers new biologically active natural products published recently (2007–09) and highlights the chemical potential of marine microorganisms, with focus on bioactive products as well as on their mechanisms of action.  相似文献   

14.
We developed a procedure to culture microorganisms below freezing point on solid media (cellulose powder or plastic film) with ethanol as the sole carbon source without using artificial antifreezes. Enrichment from soil and permafrost obtained on such frozen solid media contained mainly fungi, and further purification resulted in isolation of basidiomycetous yeasts of the genera Mrakia and Leucosporidium as well as ascomycetous fungi of the genus Geomyces. Contrary to solid frozen media, the enrichment of liquid nutrient solutions at 0 degrees C or supercooled solutions stabilized by glycerol at -1 to -5 degrees C led to the isolation of bacteria representing the genera Polaromonas, Pseudomonas and Arthrobacter. The growth of fungi on ethanol-microcrystalline cellulose media at -8 degrees C was exponential with generation times of 4.6-34 days, while bacteria displayed a linear or progressively declining curvilinear dynamic. At -17 to -0 degrees C the growth of isolates and entire soil community on 14C-ethanol was continuous and characterized by yields of 0.27-0.52 g cell C (g of C-substrate)(-1), similar to growth above the freezing point. The 'state of maintenance,' implying measurable catabolic activity of non-growing cells, was not confirmed. Below -18 to -35 degrees C, the isolated organisms were able to grow only transiently for 3 weeks after cooling with measurable respiratory and biosynthetic (14CO2 uptake) activity. Then metabolic activity declined to zero, and microorganisms entered a state of reversible dormancy.  相似文献   

15.
Experiments were conducted to determine temperatures between 24 and 4 degrees C at which stallion spermatozoa are most susceptible to cold shock damage. Semen was diluted to 25 x 10(6) spermatozoa/ml in a milk-based extender. Aliquots of extended semen were then cooled in programmable semen coolers. Semen was evaluated by computerized semen analysis initially and after 6, 12, 24, 36 and 48 hours of cooling. In Experiment 1A, semen was cooled rapidly (-0.7 degrees C/minute) from 24 degrees C to either 22, 20, 18 or 16 degrees C; then it was cooled slowly (-0.05 degrees C/minute) to a storage temperature of 4 degrees C. In Experiment 1B, rapid cooling proceeded from 24 degrees C to either 22, 19, 16, or 13 degrees C, and then slow cooling occurred to 4 degrees C. Initiating slow cooling at 22 or 20 degrees C resulted in higher (P<0.05) total and progressive motility over the first 24 hours of cooling than initiating slow cooling at 16 degrees C. Initiation of slow cooling at 22 or 19 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of cooled storage than initiation of slow cooling at 16 or 13 degrees C. In Experiment 2A, semen was cooled rapidly from 24 to 19 degrees C, and then cooled slowly to either 13, 10, 7 or 4 degrees C, at which point rapid cooling was resumed to 4 degrees C. Resuming the fast rate of cooling at 7 degrees C resulted in higher (P<0.05) total and progressive motility at 36 and 48 hours of cooled storage than resuming fast cooling at 10 or 13 degrees C. In Experiment 2B, slow cooling proceeded to either 10, 8, 6 or 4 degrees C before fast cooling resumed to 4 degrees C. There was no significant difference (P>0.05) at most storage times in total or progressive motility for spermatozoa when fast cooling was resumed at 8, 6 or 4 degrees C. In Experiment 3, cooling units were programmed to cool rapidly from 24 to 19 degrees C, then cool slowly from 19 to 8 degrees C, and then resume rapid cooling to storage temperatures of either 6, 4, 2 or 0 degrees C. Storage at 6 or 4 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of storage than 0 or 2 degrees C.  相似文献   

16.
Sample handling techniques when analyzing regulatory peptides   总被引:2,自引:0,他引:2  
Collection of blood samples in prechilled heparinized tubes, rapid cooling and centrifugation at 4 degrees C were found to be more important than the enzyme inhibitors aprotinin and EDTA in preserving immunoreactive neuropeptide Y. Nine months after storage of plasma in the frozen state at -20 degrees C or -80 degrees C the recovery of NPY was about 50% of the recovery at immediate analysis. Synthetic substance P added to guinea pig plasma at 37 degrees C disappeared almost entirely within 30 seconds as measured by radioimmunoassay while the concentrations of neurokinin A and neuropeptide K decreased only to a minor extent during a 20 min observation period. The total concentration of immunoreactive substance P and neurokinin A in boiled aqueous and acetic acid extracts of rat dorsal spinal cord was on the other hand stable for 72 h at 4 degrees C, 24 h at room temperature and after freezing and thawing three times. However, chromatographic analysis indicated that the immunoreactivity became increasingly more heterogenous in the samples particularily at room temperature. Acid ethanol and Sep Pak extraction of plasma samples resulted in almost 90% recovery of neuropeptide Y, neuropeptide K and calcitonin gene-related peptide while removing crossreacting substances with high molecular weight.  相似文献   

17.
We recently identified phosphatidylethanol (Pet) in tissues from ethanol-treated rats. Since phosphatidyl esters are formed artefactually during freezing in plants we wanted to examine if PE was elevated during freezing in animal tissues. Rats were treated with 3 g/kg of ethanol, killed after 3 h and PE was isolated from kidneys at once or after storage at 0, -5, -10, -15, -20 and -80 degrees C for 7 days. Kidneys analyzed at once or after storage at -80 degrees C had Pet equivalent to 0.02 mumol Pet/g. Storage at -10 degrees C and -15 degrees C resulted in increases of Pet to 1.5 mumol Pet/g and 1.2 mumol Pet/g, respectively. Thus, Pet is artefactually elevated during storage of tissues from ethanol-treated rats at lower freezing temperatures, reflecting considerable changes in composition of acidic phospholipids.  相似文献   

18.
The marine environment is a virtually untapped source of novel actinomycete diversity and its metabolites. Investigating the diversity of actinomycetes in other marine macroorganisms, like seaweeds and sponges, have resulted in isolation of novel bioactive metabolites. Actinomycetes diversity associated with corals and their produced metabolites have not yet been explored. Hence, in this study we attempted to characterize the culturable actinomycetes population associated with the coral Acropora digitifera. Actinomycetes were isolated from the mucus of the coral wherein the actinomycetes count was much higher when compared with the surrounding seawater and sediment. Actinobacteria-specific 16S rRNA gene primers were used for identifying the isolates at the molecular level in addition to biochemical tests. Amplified ribosomal DNA restriction analysis using three restriction enzymes revealed several polymorphic groups within the isolates. Sequencing and blast analysis of the isolates revealed that some isolates had only 96.7% similarity with its nearest match in GenBank indicating that they may be novel isolates at the species level. The isolated actinomycetes exhibited good antibacterial activity against various human pathogens. This study offers for the first time a prelude about the unexplored culturable actinomycetes diversity associated with a scleractinian coral and their bioactive capabilities.  相似文献   

19.
We have measured the lateral diffusion coefficient (D), of active dansyl-labeled gramicidin C (DGC), using the technique of fluorescence photobleaching recovery, under conditions in which the cylindrical dimer channel of DGC predominates. In pure, hydrated, dimyristoylphosphatidylcholine (DMPC) multibilayers (MBL), D decreases from 6 X 10(-8) cm2/s at 40 degrees C to 3 X 10(-8) cm2/s at 25 degrees C, and drops 100-fold at 23 degrees C, the phase transition temperature (Tm) of DMPC. Above Tm, addition of cholesterol decreases D; a threefold stepwise drop occurs between 10 and 20 mol %. Below Tm, increasing cholesterol increases D; a 10-fold increase occurs between 10 and 20 mol % at 21 degrees C, between 20 and 25 mol % at 15 degrees C, and between 25 and 30 mol % at 5 degrees C. In egg phosphatidylcholine (EPC) MBL, D decreases linearly from 5 X 10(-8) cm2/s at 35 degrees C to 2 X 10(-8) cm2/s at 5 degrees C; addition of equimolar cholesterol reduces D by a factor of 2. Thus this transmembrane polypeptide at low membrane concentrations diffuses quite like a lipid molecule. Its diffusivity in lipid mixtures appears to reflect predicted changes of lateral composition. Increasing gramicidin C (GC) in DMPC/GC MBL broadened the phase transition, and the diffusion coefficient of the lipid probe N-4-nitrobenzo-2-diazole phosphatidylethanolamine (NBD-PE) at 30 degrees C decreases from 8 X 10(-8) cm2/s below 5 mol % GC to 2 X 10(-8) cm2/s at 14 mol % GC; D for DGC similarly decreases from 4 X 10(-8) cm2/s at 2 mol % GC to 1.4 X 10(-8) cm2/s at 14 mol % GC. Hence, above Tm, high concentrations of this polypeptide restrict the lateral mobility of membrane components.  相似文献   

20.
Johnson EL  Kim SH  Emche SD 《BioTechniques》2003,35(2):310-4, 316
Rolled and mature leaf tissue was harvested from Erythroxylum coca var. coca Lam. (coca) to determine a method for storage that would maintain DNA with high quality and content up to 50 days. Harvesting coca leaf tissue under Andean field conditions often requires storage from 3 to 10 days before extraction where tissue integrity is lost. All samples of rolled and mature coca leaf tissue were harvested and separately stored fresh in RNAlater for 50 days at 4 degrees, -20 degrees, and 23 degrees C, while similar samples were air-dried for 72 h at 23 degrees C or oven-dried for 72 h at 40 degrees C after storage, before extraction. Triplicate samples of each tissue type were extracted for DNA at 10-day intervals and showed that DNA integrity and content were preserved in leaf tissue stored at 4 degrees and -20 degrees C for 50 days. Rolled and mature leaf tissue stored at 4 degrees, -20 degrees, and 23 degrees C showed insignificant degradation of DNA after 10 days, and by day 50, only leaf tissue stored at 4 degrees and -20 degrees C had not significantly degraded. All air- and oven-dried leaf tissue extracts showed degradation upon drying (day 0) and continuous degradation up to day 50, despite storage conditions. Amplified fragment length polymorphism analysis of DNA from rolled and mature leaf tissue of coca stored at 4 degrees and -20 degrees C for 0, 10, and 50 days showed that DNA integrity and content were preserved. We recommend that freshly harvested rolled or mature coca leaf tissue be stored at 4 degrees, -20 degrees, and 23 degrees C for 10 days after harvest, and if a longer storage is required, then store at 4 degrees or -20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号