首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polyepitopic CD8+ T-cell response is critical for the control of hepatitis B virus (HBV) infection. The HBV X protein (HBx) is a multifunctional protein that is important for the viral life cycle and for host-virus interactions. The aim of this study was to analyze the immunogenicity and dominance of various HLA-A*0201-restricted HBx-derived epitopes. For this purpose, we immunized HLA-A*0201-transgenic mice with HBx-derived peptides and DNA. This is a powerful model for studying the induction of HLA-A*0201-restricted immune responses in vivo, as these mice possess a cytotoxic T lymphocyte (CTL) repertoire representative of HLA-A2.1 individuals. We used cytotoxic tests and enzyme-linked immunosorbent spot (ELISPOT) assays to study the induction of specific cytotoxic and interferon (IFN)-gamma-secreting T cells. This allowed us to classify the HBx epitopes according to their T-cell activation capacity. After endogenous processing of the antigen synthesized in vivo after DNA-based immunization, we found that the HBx-specific T-cell response is targeted against one immunodominant epitope. Furthermore, following peptide immunization, we identified six additional novel subdominant T-cell epitopes. Inclusion of well-characterized epitopic sequences of HBx in a new vaccine for chronic HBV infections could help to broaden the T-cell response.  相似文献   

2.
Because cytotoxic T lymphocytes (CTLs) play an important role in the specific immunotherapy of hepatitis C virus (HCV) infection, a series of CTL epitopes has been defined from HCV genotype 1a or 1b protein. Here, we attempted to identify HCV2a-derived epitopes that are capable of inducing HLA-A2-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells (PBMCs) of HLA-A2+ HCV2ainfected patients or healthy donors were stimulated in vitro with each of the HCV2a-derived peptides, which were prepared based on the HLA-A2-binding motif, and their peptide-specific and HLA-A2-restricted cytotoxicities were examined. The HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides were found to efficiently induce peptide-specific CTLs from the PBMCs of HLA-A2+ HCV2ainfected patients. Cytotoxicity was mainly mediated by CD8+ T cells in a HLA class I-restricted manner. These results indicate that the HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides might be applicable for peptide-based immunotherapy of HLA-A2+ HCV2a-infected patients.  相似文献   

3.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

4.
CD8(+) T lymphocytes have been shown to be involved in controlling poxvirus infection, but no protective cytotoxic T-lymphocyte (CTL) epitopes are defined for variola virus, the causative agent of smallpox, or for vaccinia virus. Of several peptides in vaccinia virus predicted to bind HLA-A2.1, three, VETFsm(498-506), A26L(6-14), and HRP2(74-82), were found to bind HLA-A2.1. Splenocytes from HLA-A2.1 transgenic mice immunized with vaccinia virus responded only to HRP2(74-82) at 1 week and to all three epitopes by ex vivo enzyme-linked immunosorbent spot (ELISPOT) assay at 4 weeks postimmunization. To determine if these epitopes could elicit a protective CD8(+) T-cell response, we challenged peptide-immunized HLA-A2.1 transgenic mice intranasally with a lethal dose of the WR strain of vaccinia virus. HRP2(74-82) peptide-immunized mice recovered from infection, while na?ve mice died. Depletion of CD8(+) T cells eliminated protection. Protection of HHD-2 mice, lacking mouse class I major histocompatibility complex molecules, implicates CTLs restricted by human HLA-A2.1 as mediators of protection. These results suggest that HRP2(74-82), which is shared between vaccinia and variola viruses, may be a CD8(+) T-cell epitope of vaccinia virus that will provide cross-protection against smallpox in HLA-A2.1-positive individuals, representing almost half the population.  相似文献   

5.
We previously reported that Tax-specific CD8(+) cytotoxic T lymphocytes (CTLs), directed to single epitopes restricted by HLA-A2 or A24, expanded in vitro and in vivo in peripheral blood mononuclear cells (PBMC) from some adult T-cell leukemia (ATL) patients after but not before allogeneic hematopoietic stem cell transplantation (HSCT). Here, we demonstrated similar Tax-specific CTL expansion in PBMC from another post-HSCT ATL patient without HLA-A2 or A24, whose CTLs equally recognized two newly identified epitopes, Tax88-96 and Tax272-280, restricted by HLA-A11, suggesting that these immunodominant Tax epitopes are present in the ATL patient in vivo.  相似文献   

6.
HLA-A2.1-associated peptides, extracted from human melanoma cells, were used to study epitopes for melanoma-specific HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) by epitope reconstitution, active peptide sequence characterization and synthetic peptide verification. CTL were generated from tumor-involved nodes by in vitro stimulation, initially with autologous melanoma cells and subsequently with allogeneic HLA-A2.1 positive melanoma cells. The CTLs could lyse autologous and aUogeneic HLA-A2. 1 positive melanomas, but not HLA-A2.1 negative melanomas or HLA-A2.1 positive non-melanomas. The lysis of melanomas could be inhibited by anti-CD3, anti-HLA class I and anti-HLA-A2.1 monoclonal antibodies. HLA-A2.1 molecules were purified from detergent-solubilized human melanoma cells by immunoaffinity column chromatography and further fractionated by reversed phase high performance liquid chromatography. The fractions were assessed for their ability to reconstitute melanoma-specific epitopes with HLA-A2.1 positive antigen-processing mutant T2 cells. Three reconstitution peaks were observed in lactate dehydrogenase release assay. Mass spectrometry and ion-exchange high performance liquid chromatography analysis were used to identify peptide epitopes. Peptides with a mass-to-charge ratio of 948 usually consist of nine amino acid residues. The data from reconstitution experiments confirmed that the synthetic peptides contained epitopes and that the peptides associated with HLA-A2.1 and recognized by melanoma-specific CTL were present in these different melanoma cells. These peptides could be potentially exploited in novel peptide-based antitumor vaccines in immunotherapy for CTL.  相似文献   

7.
We have established several HLA-A2.1-transgenic rabbit lines to provide a host to study CD8(+) T cell responses during virus infections. HLA-A2.1 protein expression was detected on cell surfaces within various organ tissues. Continuous cultured cells from these transgenic rabbits were capable of presenting both endogenous and exogenous HLA-A2.1-restricted epitopes to an HLA-A2.1-restricted epitope-specific CTL clone. A DNA vaccine containing an HLA-A2.1-restricted human papillomavirus type 16 E7 epitope (amino acid residues 82-90) stimulated epitope-specific CTLs in both PBLs and spleen cells of transgenic rabbits. In addition, vaccinated transgenic rabbits were protected against infection with a mutant cottontail rabbit papillomavirus DNA containing an embedded human papillomavirus type 16 E7/82-90 epitope. Complete protection was achieved using a multivalent epitope DNA vaccine based on epitope selection from cottontail rabbit papillomavirus E1 using MHC class I epitope prediction software. HLA-A2.1-transgenic rabbits will be an important preclinical animal model system to study virus-host interactions and to assess specific targets for immunotherapy.  相似文献   

8.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

9.
ZM Huang  ZC Jia  J Tang  Y Zhang  Y Tian  DJ Ni  F Wang  YZ Wu  B Ni 《BMB reports》2012,45(7):408-413
Almost all melanoma cells express at least one member of the MAGE-A antigen family, making the cytotoxic T cells (CTLs) epitopes with cross-immunizing potential in this family attractive candidates for the broad spectrum of anti-melanoma immunotherapy. In this study, four highly homologous peptides (P264: FLWGPRALA, P264I9: FLWGPRALI, P264V9: FLWGPRALV, and P264H8: FLWGPRAHA) from the MAGE-A antigens were selected by homologous alignment. All four peptides showed high binding affinity and stability to HLA-A*02:01 molecules, and could prime CTL immune responses in human PBMCs and in HLA-A*02:01/K(b) transgenic mice. CTLs elicited by the four epitope peptides could cross-lyse tumor cells expressing the mutual target antigens, except MAGE-A11 which was not tested. However, CTLs induced by P264V9 and P264I9 showed the strongest target cell lysis capabilities, suggesting both peptides may represent the common CTL epitopes shared by the eight MAGE-A antigens, which could induce more potent and broad-spectrum antitumor responses in immunotherapy.  相似文献   

10.
Identification of immunogenic peptides for the generation of cytotoxic T lymphocytes (CTLs) may lead to the development of novel cellular therapies to treat disease relapse in acute myeloid leukemia (AML) patients. The objective of these studies was to evaluate the ability of unique HLA-A2.1-specific nonameric peptides derived from CD33 antigen to generate AML-specific CTLs ex vivo. We present data here on the identification of an immunogeneic HLA-A2.1-specific CD33(65-73) peptide (AIISGDSPV) that was capable of inducing CTLs targeted to AML cells. The CD33-CTLs displayed HLA-A2.1-restricted cytotoxicity against both mononuclear cells from AML patients and the AML cell line. The peptide- as well as AML cell-specificity of CD33-CTLs was demonstrated and the secretion of IFN-gamma by the CTLs was detected in response to CD33(65-73) peptide stimulation. The cultures contained a distinct CD33(65-73) peptide-tetramer(+)/CD8(+) population. Alteration of the native CD33(65-73) peptide at the first amino acid residue from alanine (A) to tyrosine (Y) enhanced the HLA-A2.1 affinity/stability of the modified CD33 peptide (YIISGDSPV) and induced CTLs with increased cytotoxicity against AML cells. These data therefore demonstrate the potential of using immunogenic HLA-A2.1-specific CD33 peptides in developing a cellular immunotherapy for the treatment of AML patients.  相似文献   

11.
To date, the pathogenesis of severe acute respiratory syndrome (SARS) in humans is still not well understood. SARS coronavirus (SARS-CoV)-specific CTL responses, in particular their magnitude and duration of postinfection immunity, have not been extensively studied. In this study, we found that heat-inactivated SARS-CoV elicited recall CTL responses to newly identified spike protein-derived epitopes (SSp-1, S978, and S1202) in peripheral blood of all HLA-A*0201(+) recovered SARS patients over 1 year postinfection. Intriguingly, heat-inactivated SARS-CoV elicited recall-like CTL responses to SSp-1 but not to S978, S1202, or dominant epitopes from several other human viruses in 5 of 36 (13.8%) HLA-A*0201(+) healthy donors without any contact history with SARS-CoV. SSp-1-specific CTLs expanded from memory T cells of both recovered SARS patients, and the five exceptional healthy donors shared a differentiated effector CTL phenotype, CD45RA(+)CCR7(-)CD62L(-), and expressed CCR5 and CD44. However, compared with the high avidity of SSp-1-specific CTLs derived from memory T cells of recovered SARS patients, SSp-1-specific CTLs from the five exceptional healthy donors were of low avidity, as determined by their rapid tetramer dissociation kinetics and reduced cytotoxic reactivity, IFN-gamma secretion, and intracellular production of IFN-gamma, TNF-alpha, perforin, and granzyme A. These results indicate that SARS-CoV infection induces strong and long-lasting CTL-mediated immunity in surviving SARS patients, and that cross-reactive memory T cells to SARS-CoV may exist in the T cell repertoire of a small subset of healthy individuals and can be reactivated by SARS-CoV infection.  相似文献   

12.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

13.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

14.
To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8(+) CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8(+) CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/beta2m complexes. All SHIV-infected Mamu-A*01(+) rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8(+) CTL response is dominant and the p41A- and p68A-specific CD8(+) CTL responses are nondominant. These results indicate that CD8(+) CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8(+) CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.  相似文献   

15.
The p53 protein is markedly up-regulated in a high proportion of human malignancies. Using an HLA-A2 transgenic mouse model, it was possible to isolate high-avidity murine CTLs that recognize class I-restricted human p53 epitopes. We isolated the alpha- and beta-chain of a TCR from a highly avid murine CTL clone that recognized the human p53(264-272) epitope. These genes were cloned into a retroviral vector that mediated high efficiency gene transfer into primary human lymphocytes. Efficiencies of >90% for gene transfer into lymphocytes were obtained without selection for transduced cells. The p53 TCR-transduced lymphocytes were able to specifically recognize with high-avidity, peptide-pulsed APCs as well as HLA-A2.1+ cells transfected with either wild-type or mutant p53 protein. p53 TCR-transduced cells demonstrated recognition and killing of a broad spectrum of human tumor cell lines as well as recognition of fresh human tumor cells. Interestingly, both CD8+ and CD4+ subsets were capable of recognizing and killing target cells, stressing the potential application of such a CD8-independent TCR molecule that can mediate both helper and cytotoxic responses. These results suggest that lymphocytes genetically engineered to express anti-p53 TCR may be of value for the adoptive immunotherapy of patients with a variety of common malignancies.  相似文献   

16.
BACKGROUND: Recipients of allogeneic stem cell transplants (SCT) are at risk of human CMV infection during their immunocompromised period. The increasing number of reports of CMV isolates resistant to ganciclovir after transplantation has led us to attempt to develop alternative strategies for preventing or treating CMV infection. This study describes a system for generating sufficient numbers of CMV-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy after SCT. METHODS: CMV-specific CTL were isolated from a single blood draw of a CMV-seropositive donor using PE-labeled HLA-A*0201/pp65(495-503) tetramers and anti-PE magnetic beads. A mixture of a tetramer-positive population and CD4(+) T lymphocytes was expanded to sufficient numbers for clinical application with IL-2 and immobilized anti-CD3 stimulation. RESULT: Starting from 50 mL of blood, we generated >10(7)/m(2) tetramer-positive CTL within 2 weeks. Flow cytometric analysis of expanded lymphocytes showed that purity of CMV peptide-specific CTL was >75%. Upon stimulation of HLA-A*0201-restricted CMV peptide, expanded CD8 T lymphocytes produced intracellular IFN-gamma. Purified CTL exhibited cytotoxic activity against CMV peptide-pulsed T2 cells and CMV-infected HLA-A*0201-positive fibroblasts, but not against HLA mismatched or uninfected target cells. Alloreactivity could be excluded in MLC. DISCUSSION: This simple, rapid culture system can be useful for adoptive immunotherapy after allogeneic SCT. We are now trying to adapt our laboratory scale study to a clinical scale study under good manufacturing practices (GMP) conditions.  相似文献   

17.
18.
We have studied Ags recognized by HLA class I-restricted CTLs established from tumor site to better understand the molecular basis of tumor immunology. HLA-A24-restricted and tumor-specific CTLs established from T cells infiltrating into lung adenocarcinoma recognized the two antigenic peptides encoded by a cyclophilin B gene, a family of genes for cyclophilins involved in T cell activation. These two cyclophilin B peptides at positions 84-92 and 91-99 induced HLA-A24-restricted CTL activity against tumor cells in PBMCs of leukemia patients, but not in epithelial cancer patients or in healthy donors. In contrast, the modified peptides at position 2 from phenylalanine to tyrosine, which had more than 10 times higher binding affinities to HLA-A24 molecules, could induce HLA-A24-restricted CTL activity against tumor cells in PBMCs from leukemia patients, epithelial cancer patients, or healthy donors. PHA-activated normal T cells were resistant to lysis by the CTL line or by these peptide-induced CTLs. These results indicate that a cyclophilin B gene encodes antigenic epitopes recognized by CTLs at the tumor site, although T cells in peripheral blood (except for those from leukemia patients) are immunologically tolerant to the cyclophilin B. These peptides might be applicable for use in specific immunotherapy of leukemia patients or that of epithelial cancer patients.  相似文献   

19.
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.  相似文献   

20.
CD8(+) cytotoxic T-lymphocytes (CTLs) have been proven, in multiple animal models, to be the most powerful antiviral and antitumor components of the immune system. We have developed a protocol to activate and expand tumor and virus peptide-specific CD8(+) T-lymphocytes from the peripheral blood of healthy, human trophic leukemia virus-1 (HTLV-1) seronegative human leucocyte antigen (HLA)-A*0201 individuals. A combination of density-based separation and culture conditions was employed to isolate dendritic cells (DCs), which are the most potent antigen-presenting cells (APCs), and T-lymphocytes. The DCs were pulsed with HLA-A*0201 binding peptides and cultured with autologous T-lymphocytes to generate peptide-specific CTLs. The CTLs were generated against a nine-amino-acid peptide from the Tax protein of HTLV-1. The CTLs were expanded according to a restimulation schedule employing peptide-pulsed autologous monocytes and low-dose interleukin-2 (IL-2) to numbers in excess of 100 x 10(6) cells following 5 weeks of culture. Expanded cells contained primarily CD3(+) T-cells, of which CD8(+) T-lymphocytes constituted greater than two-thirds of the cell population. Obtained CTLs exhibited potent antigen-specific lysis of peptide-pulsed target cells in a dose-dependent fashion in in vitro (51)Cr release cytotoxicity assay. This antigen-specific killing was shown to be HLA class I restricted and mediated by CD8(+) T-lymphocytes. Since the T-lymphocytes were obtained from HTLV-1 seronegative donors, the generation of peptide-specific CTLs represents reliable and reproducible elicitation of a primary immune response in vitro against naive antigens and subsequent expansion of generated CTLs for adoptive immunotherapy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号