首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation in vitro of dioxin and glucocorticoid receptors from a non-DNA binding to a DNA binding state was characterized. Ligand-free dioxin and glucocorticoid receptors were partially co-purified from rat liver cytosol, and both receptors sedimented at 9 S following labeling with the respective ligand. The 9 S forms of the dioxin and glucocorticoid receptors have previously been shown to represent heteromeric complexes containing the Mr approximately equal to 90,000 heat shock protein. The 9 S ligand-free or ligand-bound glucocorticoid receptor was converted to the monomeric 4-5 S form upon exposure to 0.4 M NaCl even in the presence of the stabilizing agent molybdate. Under identical conditions, the 9 S ligand-free and ligand-bound dioxin receptor forms remained essentially intact. However, in the absence of molybdate, the dioxin receptor could be converted to a 4-5 S form upon exposure to high concentrations of salt. These results indicate that the glucocorticoid receptor readily dissociates from the 9 S to the 4-5 S form even in the absence of hormone, whereas both the ligand-free and ligand-occupied 9 S dioxin receptor forms represent more stable species. Gel mobility shift experiments revealed that the 4-5 S glucocorticoid receptor interacted with a glucocorticoid response element both in the absence and presence of ligand. On the other hand, occupation of the dioxin receptor by ligand greatly enhanced the ability of the receptor to be activated to a form that binds to its target enhancer element. Once dissociated, the monomeric form of the dioxin receptor was also able to interact with its DNA target sequences even in the absence of ligand. Thus, ligand binding efficiently facilitates subunit dissociation of the dioxin receptor but is not a prerequisite for DNA binding per se. Given the apparent stability of its non-DNA binding 9 S form, the dioxin receptor system might be a useful model for the investigation of the mechanism of activation of soluble receptor proteins.  相似文献   

2.
A comparison of the physicochemical properties between pyridoxal 5'-phosphate- and 0.4 M KCl-extracted nuclear glucocorticoid receptors has been made utilizing HeLa S3 cells as a source of receptor. Both pyridoxal 5'-phosphate/NaBH4-reduced and 0.4 M KCl-extracted receptors sedimented as approximately 3.5-4.5 S species in 5-20% sucrose gradients containing 0, 0.15, and 0.4 M KCl. Under low-ionic-strength buffer conditions, pyridoxal 5'-phosphate-extracted receptor elutes close to the void volume of a Sephacryl S-300 gel-exclusion column. Increasing the [KCl] of the column to 0.4 M resulted in the elution of receptor with a Stokes radius of 58 A and calculated Mr = 96,000. Nuclear receptors extracted with 0.4 M KCl also formed a large-molecular-weight complex which eluted close to the void volume of the gel-exclusion column. Increasing the [KCl] to 0.4 M had the effect of shifting this receptor form to a species which had a Stokes radius of 62 A and calculated Mr = 89,700. Ion-exchange analysis of nuclear-extracted receptors revealed that 0.4 M KCl-extracted receptors exhibited considerable charge heterogeneity, whereas pyridoxal 5'-phosphate-extracted receptors did not. Pyridoxal 5'-phosphate-extracted receptors (approximately 86%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M; approximately 14% of the receptors had little affinity for DEAE-cellulose. Pyridoxal phosphate-treated receptors had little affinity for hydroxylapatite, phosphocellulose, and DNA-cellulose. The predominant form of 0.4 M KCl-extracted nuclear receptors (approximately 78%) eluted from DEAE-cellulose between 0.05 and 0.15 M KCl, a position coincident with "activated" glucocorticoid receptors. The remaining receptor fraction (approximately 22%) eluted from DEAE-cellulose at a [KCl] greater than 0.15 M, a position coincident with "unactivated" glucocorticoid receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
This study shows that cytosolic androgen receptor of rat ventral prostate sediments at 10-11 S on conventional low salt sucrose density gradients (SDG), and at 4.6 S on high salt SDG, whether it is activated or not; inclusion of 10 mM Na2MoO4 in all buffers does not alter these sedimentation coefficients. In the presence of 50 mM Na2MoO4 non-activated and activated androgen receptors sediment in high salt SDG at 7-8 S and 4.6 S, respectively. Thus the presence of high concentrations of molybdate during centrifugation inhibits the KCl induced disaggregation of receptor into subunits. Similar effects are observed on Sephacryl-S200 gel filtration; in 50 mM MoO2-4 and 0.4 M KCl non-activated receptor has an estimated Stokes radius of 67 A; this value decreases to 52 A upon activation in the presence of proteolysis inhibitors; omission of molybdate during chromatography yielded 52 A and 27 A entities. Estimated mol. wts are 198,000 Daltons for the non-activated 67 A form and 98,000 Daltons for the activated 52 A receptor. Sodium molybdate (50 mM) prevents temperature (18 degrees C) and high ionic strength (0.4 M KCl) induced receptor activation. This inhibition was overcome by removing molybdate by centrifugal gel filtration, or by increasing the KCl concentration to 0.8 M. The inhibitory effects of molybdate on salt induced receptor disaggregation into activated subunits are no longer observed at pH greater than 7.4 or after chemical modification of sulfhydryl groups. Once androgen receptor has been disaggregated into its activated subunits the activated state is maintained even upon reassociation to 10-11 S aggregates in low salt. The relative concentrations of KCl and molybdate are critical; thus, 10 mM Na2MoO4/0.4 M KCl and 50 mM Na2MoO4/0.8-1.2 M KCl did not differentiate activated from non-activated androgen receptor based on their hydrodynamic properties. In the presence of 0.4 M KCl and 50 mM molybdate, however, the hydrodynamic properties of androgen receptor can be correlated with receptor activation.  相似文献   

4.
V Felt 《Endokrinologie》1979,74(1):52-56
Cortisol binding by cytosol and 0.4 M KCl extract of the nuclear fraction of human leukocytes were studied by gel chromatography and ion exchange filtration on DEAE cellulose. The cytoplasmic cortisol binding protein has a molecular weight 95 000 and the soluble nuclear binding protein 50 000. The absence of the uptake of radioactive cortisol by isolated nuclei and the apparent requirement of the cytosol for glucocorticoid specific binding in nuclear receptor sites was observed. The association constant characterising the binding of cortisol to cytosol was KA = 3.5 . 10(9) l/mol.  相似文献   

5.
The interaction of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) with immobilized heparin (heparin-Sepharose) or DNA (DNA-cellulose) has been compared to the polyanionic-binding properties of the rat hepatic glucocorticoid receptor. Both the nonoccupied and in vitro occupied forms of the receptors interacted with heparin-Sepharose but with varying strength, as determined by ligand binding assays or an enzyme-linked immunosorbent assay based on a monoclonal antibody against the steroid- and DNA-binding Mr approximately 94,000 glucocorticoid receptor protein. In the absence of ligand, both the dioxin and glucocorticoid receptors eluted from heparin-Sepharose at 0.1-0.2 M KCl, in contrast to the in vitro occupied receptor forms which eluted at 0.3-0.4 M KCl. Following elution of the in vitro occupied dioxin receptor from heparin-Sepharose, it was efficiently retained on DNA-cellulose and eluted at an ionic strength of approximately 0.2 M KCl. In the presence of 20 mM sodium molybdate which is known to inhibit the activation of steroid hormone receptors to a DNA-binding form, both the dioxin and glucocorticoid receptors eluted at 0.1-0.2 M KCl from heparin-Sepharose. In analogy to what has previously been shown for the glucocorticoid receptor, sodium molybdate stabilized a large dioxin-receptor complex with a sedimentation coefficient, S20,w, of 9-10 S, a Stokes radius of approximately 7.5 nm, and a calculated Mr of 290,000-310,000. Limited proteolysis of both the dioxin and glucocorticoid receptors with trypsin which is known to eliminate the DNA-binding property of both receptor forms also resulted in a decreased strength in the interaction of both in vitro occupied receptors with heparin-Sepharose (elution at 0.1-0.2 M KCl). In line with these data, calf thymus DNA in solution competed for receptor binding to heparin-Sepharose. In conclusion, the chromatographic properties of the dioxin receptor on heparin-Sepharose are indistinguishable from those of the glucocorticoid receptor, and both receptors appear to be structurally and functionally closely related proteins.  相似文献   

6.
Treatment of intact GH1 cells with sodium molybdate inhibits the subsequent rate of nuclear accumulation of hormone-occupied glucocorticoid and estrogen receptors. Cells were incubated at 23 degrees C for 1 h with 30 mM molybdate and then for up to 30 min with [3H]triamcinolone acetonide or [3H]estradiol in the continued presence of molybdate. Although molybdate did not affect the rate of receptor occupancy with either steroid, cells treated with molybdate had more occupied cytosolic and fewer occupied nuclear receptors than control cells. For the glucocorticoid receptor, cells treated with molybdate had more 10 S and fewer 4 S cytosolic receptors than control cells. In low salt cytosol molybdate inhibits the temperature-mediated subunit dissociation of occupied 10 S glucocorticoid receptor. These results suggest that a hormone-mediated dissociation of an intracellular 10 S oligomeric glucocorticoid receptor form to its 4 S subunits is required prior to accumulation of occupied receptors in the nuclear fraction. In cells incubated at 37 degrees C for 1 h or longer with [3H]triamcinolone acetonide, molybdate shifts the steady state intracellular distribution of receptor toward the 10 S cytosolic receptor form, consistent with the interpretation that molybdate affects the rapidly exchanging subunit equilibrium between the 10 S and 4 S cytosolic forms by slowing the rate of 10 S receptor dissociation. Molybdate prevents loss of glucocorticoid-occupied 10 S but not 4 S receptors in heated cytosol by stabilizing the relatively protease-resistant 10 S receptor. Since molybdate stabilizes 10 S oligomeric steroid receptors in vitro, the effects of molybdate on nuclear accumulation of occupied receptors in intact cells support the intracellular existence and physiological relevance of 10 S glucocorticoid and estrogen receptors. These results support a general model for steroid receptor activation in which binding of hormone promotes dissociation of intracellular 8-10 S oligomeric receptors to their DNA-binding subunits.  相似文献   

7.
Side chain-hydroxylated derivatives of cholesterol (OH sterol) inhibiting lymphoblastic transformation bind with high affinity and specificity to a hydroxysterol binding protein (OHSBP) in the cytosol of human lymphocytes. These binding properties of OHSBP suggested some analogies with that of steroid hormone receptors. The observation of a nuclear binding of 25-OH[3H]cholesterol prompted us to apply to the cytosolic OH sterol-OHSBP complex the physico-chemical treatments known to 'activate' the steroid hormone receptors. A change of sedimentation coefficient from 8.3 to 4.3 S was observed in hypertonic buffer (0.4 M KCl) but the resulting 4.3 S complex dissociates easily whereas the 'native' 8.3 S form does not. Moreover, molybdate did not prevent the 8.3----4.3 S transformation induced by KCl and neither ammonium sulfate precipitation nor increasing temperature had any effect on the sedimentation coefficient of the 8.3 S complex. Thus, several physico-chemical features differentiate the OH sterol-OHSBP complex from steroid hormone receptors.  相似文献   

8.
Specific binding of 1alpha,25-dihydroxycholecalciferol to macromolecular components of small intestinal mucosa nuclei is demonstrated in vitamin D-deficient chicks. The nuclear 1alpha,25-dihydroxycholecalciferol-macromolecule complex was isolated on sucrose density gradients and sediments at 3.7 S in the presence of 0.3 M KCl. Agarose gel filtration of the nuclear component indicated an apparent molecular weight of 47,000. The nuclear receptor complexes could not be distinguished from previously described cytoplasmic 1alpha,25-dihydroxycholecalciferol-binding components by the ultracentrifugation and chromatographic procedures employed. The association of the 3-H-sterol with the nuclear component is thermolabile and is destroyed by treatment with pronase, but not by nucleases; the receptor component is therefore presumed to be a protein. The macromolecular-1alpha,25-dihydroxycholecalciferol complex formed in vivo or in vitro at 25 degrees can be extracted from intestinal nuclei by 0.3 M KCl, but not by low salt buffers. Smaller amounts of the 3.7 S binding component can be detected in isolated purified chromatin or after incubation of 1alpha,25-dihydroxy[3-H]cholecalciferol with reconstituted cytosol-chromatin at 0 degrees. Following incubation of the labeled hormone with reconstituted cytosol-chromatin at 0 degrees, 1alpha,25-dihydroxy[3-H]cholecalciferol is primarily associated with the cytoplasmic receptor, After shifting the incubation temperature to 25 degrees, a progressive increase in the concentration of the nuclear receptor complex and a concomitant decrease in the concentration of the cytoplasmic binding component occur. Thus the 1alpha,25-dihydroxycholecalciferol binding molecules appear to exist primarily in the cytoplasm, where they presumably function to transport the hormone into the nucleus. Experiments employing incubation of 1alpha,25-dihydroxy[3-H]cholecalciferol with reconstituted cytosol-chromatin from nontarget tissues indicate a requirement for both intestinal cytosol and chromatin for maximal formation of the nuclear hormone-receptor complex. These results suggest that the nuclear-binding component arises from hormone-dependent transfer of the cytoplasmic 1alpha,25-dihydroxycholecalciferol receptor to intestinal chromatin acceptor sites.  相似文献   

9.
In structure and general mode of action, the Ah receptor is very similar to the receptors for steroid hormones. Molybdate previously has been shown to be highly effective at preserving ligand-binding function in steroid receptors during their exposure to elevated temperature or high ionic strength and at stabilizing steroid receptors as high molecular weight oligomeric complexes. Since such stabilization by molybdate can be very useful during characterization and purification of receptors, we tested the effects of molybdate on the Ah receptor to determine if the Ah receptor, like the receptors for steroid hormones, might be stabilized. In hepatic cytosols from C57BL/6N mice and Sprague-Dawley rats, molybdate concentrations up to 30 mM in homogenizing and analysis buffers did not alter the concentration of specific Ah receptor sites detected by binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin. However, inclusion of 20 mM molybdate in the homogenizing buffer did significantly protect unliganded Ah receptor from thermal inactivation at 20 degrees C and from KCl-induced loss of ligand-binding ability. In accord with previous reports, 20 mM molybdate in homogenizing and analysis buffers greatly increased the concentration of detectable glucocorticoid receptor in rat hepatic cytosol and estrogen receptor in rat uterine cytosol. Exposure to 0.4 M KC1 caused the glucocorticoid receptor from rat liver to shift sedimentation from approximately equal to 8 S to approximately equal to 4 S and caused a severe loss of specific glucocorticoid binding. Presence of 20 mM molybdate stabilized the glucocorticoid receptor as a single discrete peak sedimenting at approximately equal to 8 S. In contrast, the Ah receptor from rat liver exposed to 0.4 M KC1 in the presence of molybdate sedimented as biphasic peaks; one peak (approximately equal to 9.5 S) corresponded to the form of Ah receptor observed at low ionic strength, while the other peak (approximately equal to 5.5 S) corresponded to the form of Ah receptor seen in cytosol treated with 0.4 M KC1 in the absence of molybdate. Addition of heparin to hepatic cytosols from mice or rats shifted sedimentation of Ah receptor from approximately equal to 9.5 S to approximately equal to 5.5 S. Molybdate, again, provided stabilization in the approximately equal to 9.5 S form, but only for about one-half the total Ah receptor content in both rat and mouse hepatic cytosols. In sum, molybdate is far less effective at stabilizing rodent Ah receptors than it is at stabilizing steroid receptors in the same species.  相似文献   

10.
Functional properties of the DNA-binding domain of the human glucocorticoid receptor were investigated using high titer polyclonal antibodies produced against single synthetic peptides or a mixture of peptides whose sequences were derived from the DNA-binding domain of steroid receptor proteins. Three of seven antisera recognized both native and denatured forms of the glucocorticoid receptor, although considerably lower antisera dilutions were required for antibody binding to native receptor. Activation of the glucocorticoid receptor to its DNA-binding form was required for antibody recognition of the native receptor. Antisera to the second finger region of the DNA-binding domain caused a portion of the activated 4S glucocorticoid receptor to sediment as 7 or 9S in sucrose gradients containing 0.4 M KCl, but did not alter the sedimentation of the nontransformed 8S receptor. Specificity of the glucocorticoid receptor-antibody interaction was demonstrated by loss of reactivity after preabsorption with peptide antigens. Antisera that interacted specifically with the glucocorticoid receptor inhibited DNA binding of the activated receptor by as much as 80%. Thus, antibody probes directed against DNA-binding domain sequences provide immunological evidence that glucocorticoid receptor activation exposes the DNA-binding region of the receptor.  相似文献   

11.
Estradiol binding components in the cytosol and nuclear fractions of the ovary from immature rats (22–28 days old) were characterized by in vitro methods. Several of the biochemical characteristics of the estradiol binding components in the ovarian tissue were compared with the estradiol receptor from the uterus. The results suggest that the ovarian estradiol binding components are similar to the specific high affinity estradiol receptors in the uterus. In the cytosol of intact rat ovary a significant fraction of the total binding sites was found to be occupied, presumably by the endogenous estrogen. Following hypophysectomy there was a significant increase in the available cytosol binding sites. Evidence for translocation of cytosol receptor-estrogen (RE) complex to the nucleus was obtained for the ovary. The sedimentation properties of the RE complex of the ovary and the uterus are similar. The ovarian cytosol RE complex sediments at 7-8S in glycerol gradients at low ionic strength and at 4S in sucrose gradients at high ionic strength. Following extraction with 0.4 M KCl the ovarain nuclear RE complex sediments at 5S in sucrose gradients which is identical to that of the uterine nuclear receptor.  相似文献   

12.
A majority of the untransformed glucocorticoid-receptor complexes (GRc) from rat liver cytosol sedimented in the 9S region in 5-20% sucrose gradients containing 0.15 M KCl and 20 mM Na2MoO4. Incubation of the cytosol at 23 degrees C, or at 0 degree C with 10 mM ATP or 0.3 M KCl caused appearance of a slower migrating (4S) form which exhibited an increased affinity toward DNA-cellulose and ATP-Sepharose. Presence of 20 mM Na2MoO4 blocked this 9S to 4S transformation of GRc. A complete conversion of the 9S to the 4S form occurred upon a 2 h incubation of GRc with 10 mM ATP at 0 degree C. Other nucleoside triphosphates (GTP, CTP, and UTP), ADP and PPi (but not AMP or cAMP) were also effective in transforming the 9S form. The heat transformation occurred in a time-dependent manner and was complete within 1 h at 23 degrees C; presence of 10 mM ATP during this 23 degrees C incubation period allowed a complete 9S to 4S alteration in 10-20 min. Addition of ATP also accelerated the rate of salt activation of the GRc; a 50% conversion to the 4S form occurred in 20 min or 3 min in the absence or the presence of 10 mM ATP during the 0 degree C incubation of GRc with 0.15 M KCl. An absolute requirement of the hormone for 9S to 4S transformation of glucocorticoid receptor (GR) was evident, as no conversion of the 9S form to the 4S form could be achieved with the ligand-free GR under any of the above conditions. Incubation of cytosol preparations at 23 degrees C or at 0 degree C with KCl or ATP caused dissociation of the GRc and reduced the steroid binding capacity of GR. Although aurintricarboxylic acid, pyridoxal 5'-phosphate, Na2MoO4, Na2WO4, o-phenanthroline, Rifamycin AF/013 and heparin inhibited the ATP-Sepharose and DNA binding of the GRc, only Na2MoO4 and Na2WO4 selectively blocked the 9S to 4S conversion. We suggest that the 9S to 4S transformation in vitro of rat liver GRc represents an acquisition of DNA and ATP-Sepharose binding ability and may involve a separation of subunits from an oligomeric receptor structure.  相似文献   

13.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

14.
G Shyamala 《Biochemistry》1975,14(2):437-444
The specific interaction of glucocorticoids with nuclei of mouse mammary tumor was studied in vitro by incubation of the tissue with [3H]dexamethasone at 25 degrees. It was demonstrated that the mammary tumors contain a limited number of specific nuclear binding sites which were saturated with low hormone concentrations (10-8 M)9 The concentrations of specific binding sites in the nuclei were related to the concentration of cytoplasmic binding sites of unincubated tissues and varied between individual tumors. The binding component in the nuclei appeared to be a protein and was easily solubilized with 0.4 M KCl containing buffers. The ability of various corticoids to block the nuclear localization of the steroid correlated well with their glucocorticoid potency. Estradiol and progesterone at concentrations of 10-6 M were also effective in competing for the glucocorticoid receptor binding sites. However, while the glucocorticoids such as hydrocortisone and corticosterone translocated to nuclear sites also specific for dexamethasone, estradiol and progesterone competed for the cytoplasmic binding sites and did not translocate to the nucleus. The possible significance of the interaction of various steroids with the glucocorticoid receptors in mammary tumors is discussed.  相似文献   

15.
The [3H]oestradiol-receptor complex was selectively isolated from rat uterus cytosol by column chromatography on oligo(dT)-cellulose. Optimal conditions are described for the binding of the complex to oligo(dT)-cellulose, which is shown to be similar to its binding to DNA-cellulose. The cytosol complex has an apparent mol. wt. of 50,000-60,000 in high salt concentrations, as determined by Sephadex G-100 chromatography. This corresponds to the 4S cytoplasmic oestradiol receptor. In binding to oligo(dT)-cellulose the receptor is transformed into a form with an apparent mol.wt. of 100,000-120,000, corresponding to the 5S nuclear receptor complex. This transformation mimics the conversion in vivo of the cytoplasmic oestradiol receptor into the nuclear form. The binding of the complex to oligo(dT)-cellulose as a 5S nuclear form is unequivocally demonstrated to require the mediation of an activating present in the cytosol. The requirement for an activating factor is discussed in relation to reports that nuclear binding of the oestradiol-receptor complex is not dictated solely by the availability of the cytoplasmic oestradiol receptor.  相似文献   

16.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell) contained cytosol glucocorticoid receptor. Scatchard analysis of cytosol indicated that the dissociation constant (Kd) was 5.6-6.5 nmol/l and the number of binding sites was 83-92 fmol/mg protein. A competitive assay showed that the binding sites for [3H]triamcinolone acetonide were specific to glucocorticoid. Glycerol density gradient centrifugation displayed that the [3H]triamcinolone acetonide receptor complexes sedimented in the 8.5 S region under low salt conditions and in the 4.2 S region under high salt condition (0.4 M KCl). The same high salt conditions induced an increased binding of [3H]triamcinolone acetonide complexes for DNA-cellulose.  相似文献   

17.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

18.
Several properties of human glucocorticoid receptors complexed to the synthetic glucocorticoid agonists dexamethasone (DEX) and triamcinolone acetonide (TA) and the antagonist dexamethasone 21-mesylate (DM) are compared in an attempt to define the mode of action of DM. Both DEX and TA induce an increase in alkaline phosphatase activity in HeLa S3 cells. Not only is DM without effect on alkaline phosphatase activity at concentrations as great as 10(-7) M, it blocks the action of DEX and TA on enzyme induction, thus acting as a pure antagonist in this system. DM-receptor complexes, like agonist-receptor complexes, are recovered in the cytosol when cells are incubated with ligand at 0 degrees C but are recovered from the nucleus when incubation is shifted to 37 degrees C, suggesting that activation of the antagonist-receptor complex occurs in vivo. The molecular species that undergoes this temperature-dependent shift from the cytosolic compartment to the nuclear compartment exhibits saturable binding to the antagonist. Both the cytosolic and nuclear species exhibit a relative molecular mass of approximately equal to 94,000 Daltons when analysed by SDS-polyacrylamide gel electrophoresis. Receptors labeled in intact cells with [3H]DM at 0 degrees C sediment at approximately 8S in sucrose gradients, shifting to 4S when the gradients contain 0.4 M KCl. DEX- and TA-labeled receptors show the same sedimentation behavior, which has been accepted as one criterion of receptor subunit dissociation, or activation.  相似文献   

19.
V Sica  E Nola  G A Puca  F Bresciani 《Biochemistry》1976,15(9):1915-1923
Sodium thiocyanate up to 0.5 M is compatible with a stable estradiol-t-receptor complex during sucrose gradient centrifugation; however, the maximum permissible concentration in 0.1 M during Sephadex G-100 and G-200 chromatography. When NaSCN 0.1 M is added to low-salt cytosol (approximately 7 mg of protein/ml); (1) age-dependent aggregation of receptor is inhibited; (2) peaks of estrogen-binding activity in sucrose gradients and on Sephadex chromatography are sharp; (3) instead of the usual larger molecular states ("8S") found in low salt, most of estrogen receptor is under the following form: 4.1S; Stokes radius, 36 A; mol wt 61 000; flfo, 1.25; homogeneous at electrofocusing, with isoelectric point at 6.0. When cytosol containing NaSCN 0.1 M is diluted down to 2-3 mg of protein/ml or, only for sucrose gradients, NaSCN concentration is increased to 0.4-0.5 M, the 61000 dalton species decreases, being substituted, without loss of bound estradiol-t, by the following estrogen-binding entity: 28S; Stokes radius, 28 A; mol wt 32 000; flfo, 1.44. In the presence of NaSCN, KCl up to 0.4 M does not affect in a significant manner the molecular properties of the above forms. When NaSCN is dialyzed out, most receptor reverts to a 8-9S state. When cytosol is preincubated with Ca2+ (4 mM) and KCl (0.4 M) before addition of NaSCN, the above picture is modified only in the following aspects: (1) Sephadex chromatography peaks are broader and slightly but reproducibly shifted toward higher elution volumes; (2) the electrofocusing pattern consists of a two-peak heterogeneous band shifted toward higher pH (isoelectric points 6.4 and 6.6); (3) upon dialysis of NaSCN there is little or no reversion to faster sedimenting states. These modifications appear to depend on limited proteolytic attack of receptor by Ca2+ -activated receptor transforming factor (RTF), not on binding of Ca2+ to receptor. Present data suggest that the 4.1S entity is a dimer resulting from side-by-side pairing of 2.8S subunits. Molecular dimension of larger receptor forms purified from cytosol are consistent with the hypothesis that under native conditions in vivo dimers are coupled end-by-end into tetrameric structures with two stronger (between subunits) and two weaker (between dimers) bonding regions, and that tetramers may further self-associate. While NaSCN reversibly releases native dimers and subunits by direct impairment of intersubunit bonds, Ca2+ activated RTF irreversibly and specifically releases slightly modified, about 60000 mol wt dimers, by preferential proteolytic attack of the weaker bonding regions and indirect destruction of involved bonds. In vivo, this effect of RTF may be instrumental in mobilization and nuclear penetration of receptor-estradiol complex. Heteroassociation of receptor with other proteins of cytosol is not excluded by the above hypothesis.  相似文献   

20.
After exposure of fetal rabbit lungs to glucocorticoid in vivo or in vitro, the hormone binds to specific receptors localized in the cytoplasm and in the nuclei. The present studies are compatible with a mechanism by which the nuclear receptor originates from the cytoplasm and arises from a hormone-, temperature-, and ionic strength-dependent transfer of the cytoplasmic receptor into the nucleus. This conclusion is reached from the following observations. Specific binding of glucocorticoid to nuclei from lungs not previously exposed to the hormone is not observed unless the cytosol is also present. In the presence of cytosol, nuclear uptake of the hormone is very slow at 0 degrees but is highly enhanced with increasing temperature. Concomitantly with the increased nuclear uptake there is an equiivalent loss of glucocortoid-receptor complex from the cytosol, indicating that the complex is transferred to the nuclei by a temperature-dependent process. Although the nuclei do not bind the cytoplasmic complex at 0 degrees, they do so provided that the cytosol is briefly heated in the presence of hormone prior to mixing with the nuclei. Thus the cytoplasmic complex must first be activated before it can bind to nuclei..  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号